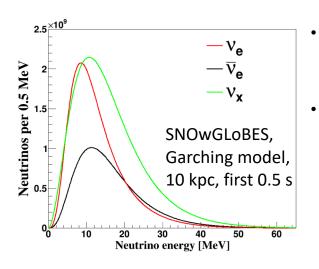


The HALO-1kT Supernova Neutrino Detector

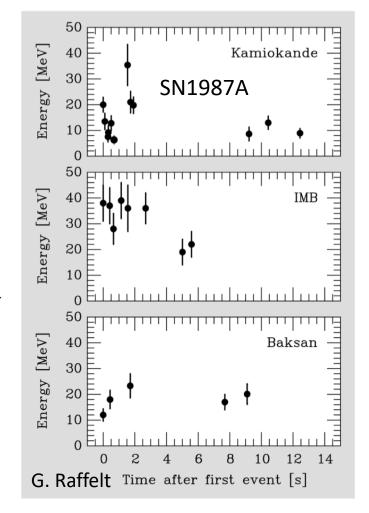
C.J. Virtue for the Collaboration



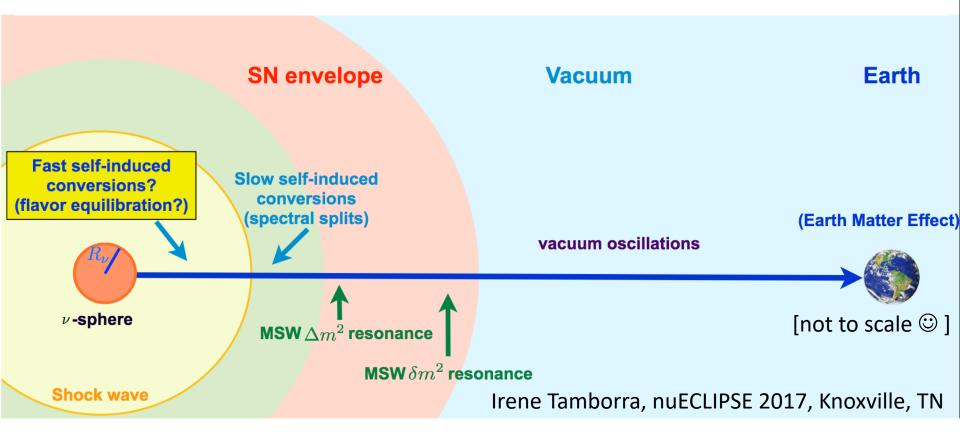
2019-06-06 CAP 2019 - SFU

Supernova Neutrinos

- our only window into core-collapse supernovae (CCSNe) dynamics
- also a CCSN is the only place where:
 - matter is opaque to neutrinos and they thermalize yielding information about the proto-neutron star environment
 - neutrino density is so large that they interact through collective phenomena resulting in spectral splits and flavour swapping
 - the low temperature, high density part of the QCD phase diagram can be explored where there are predictions of nuclear matter → quark matter phase transitions

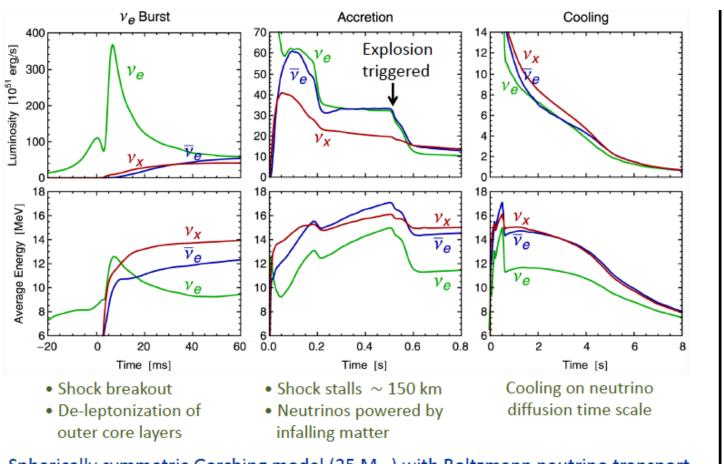


we start with Fermi-Dirac distributions at the neutrino-spheres with:


$$T(\nu_e) < T(\overline{\nu}_e) < T(\nu_x)$$

this signal is imprinted with:

- collective effects
- MSW effects
- shockwave effects
- large scale density oscillations
- vacuum oscillations



Simplified Picture of Flavour Conversions

- neutrino emission source at v-sphere evolves with time
- large-scale hydrodynamic effects (instabilities, ringing, dipole oscillations) affect neutrino signal
- then any given detector terrestrial detector imperfectly records part of the signal
- what can any one detector do when the signal is spread across v_e , $\overline{v_e}$, v_x and the time evolution of their flux and energy spectra with marginal statistics?!

Three Phases of Neutrino Emission

Spherically symmetric Garching model (25 ${
m M}_{\odot}$) with Boltzmann neutrino transport

Georg Raffelt, MPI Physics, Munich

NOW 2014, 7-14 Sept 2014, Otranto, Italy

The Trouble with Supernovae

Oct. 13, 2016

Hubble Reveals Observable Universe Contains 10 Times More Galaxies Than Previously Thought

- SNe are very frequent in our universe (1→10? per second)
- Current and next generation terrestrial supernova neutrino detectors only see supernovae within our galaxy (tiny part of the universe)
- So.... The galactic core-collapse supernova rate is estimated, Adams et al., ApJ, 778, 2, 164, (2013), at

$$3.2^{+7.6}_{-2.6}$$
 per century

so... observing the neutrino signal requires some patience

Lead-based Supernova Detector

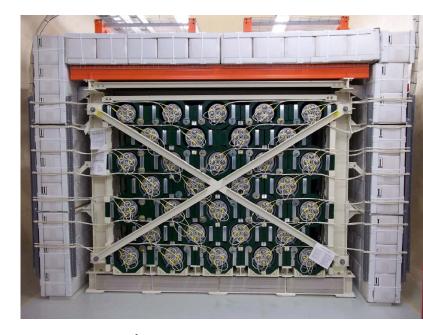
- set of detectors currently participating in SNEWS Super-Kamiokande, LVD, Borexino, IceCube, KamLAND, Daya Bay, HALO
- with exception of HALO all are Liquid Scintillator (LS) or Water Cherenkov (WC) and are dominantly sensitive to the $\overline{\nu}_e$ flux through IBD
- lead-based SN detectors are \overline{v}_e blind, i.e. complementary
- reactions

CC:
$$\nu_e + {}^{208}\text{Pb} \rightarrow {}^{207}\text{Bi} + n + e^- - 10.3\,\text{MeV}$$

$$\nu_e + {}^{208}\text{Pb} \rightarrow {}^{206}\text{Bi} + 2n + e^- - 18.4\,\text{MeV}$$
NC: $\nu_x + {}^{208}\text{Pb} \rightarrow {}^{207}\text{Pb} + n - 7.4\,\text{MeV}$

$$\nu_x + {}^{208}\text{Pb} \rightarrow {}^{206}\text{Pb} + 2n - 14.1\,\text{MeV}$$

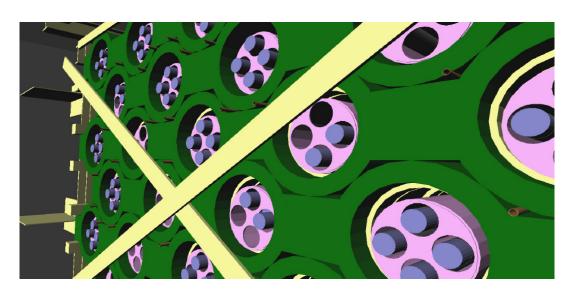
- electrons carry energy information and can be used to tag CC reactions, however
 - requires lead in solution was explored and abandoned, or
 - requires fine-grained lead-scintillator also abandoned
 - so no CC tagging or energy measurement
- neutrons detected through capture on ³He after thermalisation
 - no energy measurement, though some sensitivity through 1n / 2n ratio
 - no direction measurement
 - only counting as a function of time

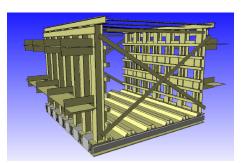

HALO - a Helium and Lead Observatory

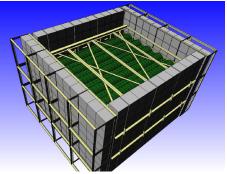
A "SN detector of opportunity" / An evolution of LAND – the Lead Astronomical Neutrino Detector, C.K. Hargrove et al., Astropart. Phys. 5 183, 1996.

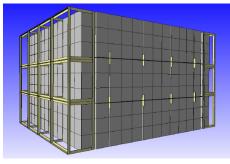
"Helium" – because of the availability of the ³He neutron detectors from the final phase of SNO

+

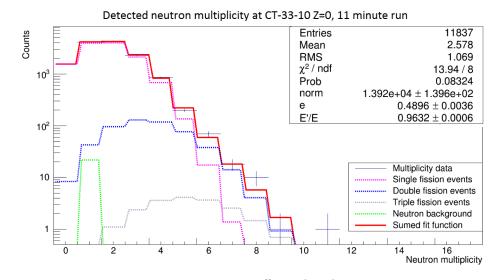

"Lead" – because of high v-Pb cross-sections, low n-capture cross-sections, complementary sensitivity to water Cerenkov and liquid scintillator SN detectors

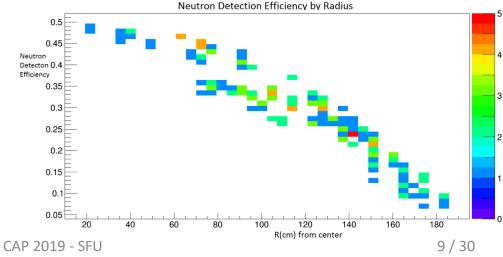



HALO recycled lead blocks from a decommissioned cosmic ray monitoring station


HALO at **SNOLAB** as a **Prototype**

- 79 tonnes of Pb
 - non-optimum lead geometry
 - instrumented with excellent low background neutron detectors (370 m containing ~1465 litre.atmospheres ³He)
- operating since May 2012
- participating in SNEWS since October 2015
- simulated / calibrated / understood
- many redundant systems for reliability

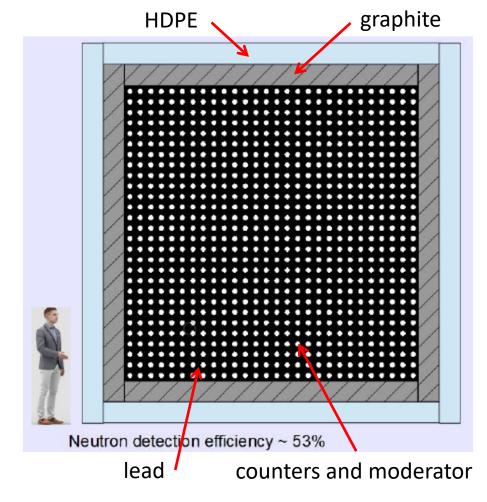




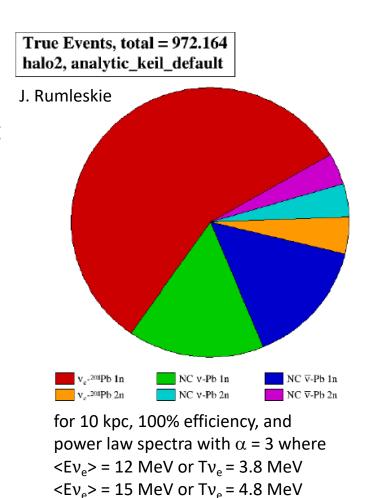
HALO Calibration with ²⁵²Cf Source

- used a low activity (~20 SF/s) ²⁵²Cf source
- with very low backgrounds were able to measure the neutron multiplicity distribution which is a strong function of the neutron capture efficiency at 192 points
- extend time window to ensure that all neutrons from an integral number of fissions were counted
- fitting simultaneously gives efficiency at a point and the source strength
- rely on Monte Carlo simulation to extrapolate from 192 discrete calibration points to a volumeaveraged efficiency for distributed supernova neutrino neutron production

HALO-1kT at LNGS


- scale up HALO keeping many design principles
- apply lessons learnt to make improvements
 - increase mass 79 → 1000 (factor of 12.7)
 - increase efficiency 28% to>50% (factor > 1.8)
- ~23 fold-increase in event statistics over HALO

The decommissioning of OPERA has made available 1300 tonnes of Pb


HALO-1kT Base Design

- lead core 4.33 x 4.33 x 5.5 m³ with 28 x 28 x 5.5 m array of ³He at 1.16 atm pressure
- 8 mm thick PS moderator
- no internal paint or coating / containment of lead blocks
- 30 cm graphite reflector
- 30 cm HDPE shielding
- reflector and shielding require further optimization once we have conceptual mechanical design for superstructure

HALO / HALO-1kT Flavour Sensitivity

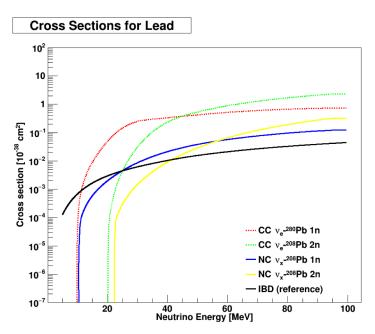
- the scientific merit of a lead-based supernova detector rests on its complementary flavour sensitivity wrt LS and WC detectors and the power that it brings to joint analyses
- the neutron excess in Pb Pauli blocks $\overline{\nu}_e$ CC reactions
- the high Z further Coulomb suppresses $\overline{\nu}_e$ CC and enhances ν_e CC
- the response remains an unresolved mixture of v_e CC and v_x NC but is largely orthogonal to LS and WC

 $\langle Ev_{\nu} \rangle = 18 \text{ MeV or } Tv_{\nu} = 5.7 \text{ MeV}$


What is to be Learnt?

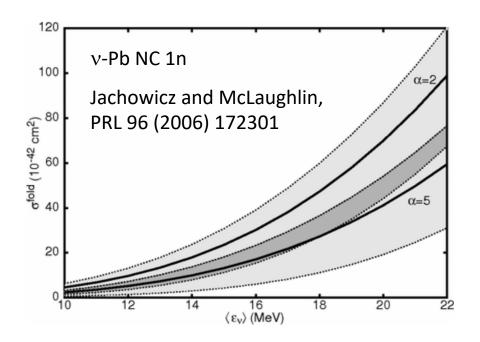
Astrophysics

- Explosion mechanism
- Accretion process
- Black hole formation (cutoff)
- Presence of Spherical accretion shock instabilities (3D effect)
- Proto-neutron star EOS
- Microphysics and neutrino transport (neutrino temperatures and pinch parameters)
- Nucleosynthesis of heavy elements
- Particle Physics
 - Normal or Inverted neutrino mass hierarchy
 - Presence of axions, exotic physics, or extra large dimensions (cooling rate)
 - Etc.


Ability to Determine $\langle E_{vx} \rangle$ and α_{vx}

- Monte Carlo study for HALO-1kT at 10 kpc
- observed 1n and 2n events unfolded to get true event ratios
- contours are 90% confidence limits for neutron capture efficiencies of 40%, 60% and 80%
- large part of parameter space can be excluded at 10 kpc, with realistic efficiencies

2019-06-06 CAP 2019 - SFU 14 / 30


v-Pb Cross Sections and Uncertainties

SNOwGLoBES -

v-Pb cross sections from Engel, McLaughlin, Volpe, PRD 67 (2003) 013005

- unmeasured, calculated only
- thresholds known
- less theoretical uncertainty near threshold
- more uncertainty away from threshold

Flux-averaged ("folded") cross sections as a function of $\langle E_v \rangle$ for power law spectra and different α showing the theoretical uncertainty in response

HALO-1kT Status

- have formed a new HALO-1kT Collaboration (growing contact me!)
 - 30 some Canadians, Americans and Italians
- Many paths to obtaining 50-55% neutron capture efficiency; cost/benefit analysis of design options proceeding
- expressed an interest in the OPERA lead to the LNGS Scientific Committee; lead is being held in reserve for HALO-1kT
- made a submission to the "10 year Plan for UG Resources" exercise and submitted an LOI to LNGS
- submitting Experimental Proposal this Fall
- in contact with US DOE Isotope Program re: ³He
- Preparing for ν-Pb cross section measurement at ORNL's SNS

End / Thank you