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Introduction

Water Cherenkov detectors well suited to many applications 
● Large target volumes possible

● Observe charged particles over wide energy range
● Identify electron-like or muon-like rings

● Reconstruct position, direction, energy

Reconstruction is essential to achieve physics goals
● Future measurements require improved precision

● Complex event topologies & enhanced background removal

Machine learning can improve on existing techniques 

● Rapid advances in deep learning past few years

● Successfully used in other detector technologies
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Physics motivations

Multi-GeV event reconstruction
● Complex multi-ring event topologies

● Resolve more of atmospheric ν oscillogram
● Measurement of mass hierarchy

● Observe ντ appearance

● Current reconstruction techniques are limited
● Complex likelihoods, computationally expensive
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M. 
Wilking

https://indico.cern.ch/event/704343/contributions/2923169/attachments/1633173/2604626/wilking.pdf
https://indico.cern.ch/event/704343/contributions/2923169/attachments/1633173/2604626/wilking.pdf
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Physics motivations

e / γ discrimination
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● Not achieved with existing techniques

● Reduce NCγ background for
ν
e
 appearance

● CP measurement at Hyper-K
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Physics motivations

Dark noise removal

● Dark noise hits limit reconstruction

● Background from dark noise coincidence

● Key for low-E measurements

● Neutron captures on H (2.2 MeV) or Gd (8 MeV)
● Supernova relic ν’s, proton decay, backgrounds,

ν/ν̅ discrimination, etc.

● Solar neutrino measurements

● Current reconstruction limited by assumptions 

● Difficult to build likelihoods for realistic dark noise

● Correlation between PMTs ignored

● Machine learning can train on real dark-noise data
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Workshop on Machine Learning
for Water Cherenkov

mlw.hyperk.ca/program/agenda
www.watchmal.org
github.com/watchmal

Successful workshop at UVic
led by Kazu Terao (SLAC) 
● Platform and data prepared in 

advance
● Jupyter notebooks with 

PyTorch ML platform
● Hyper-K Intermediate detector 

simulated data

● Working sessions
● All 19 participants excitedly 

developed and ran code

● Preliminary results show 
some promise

● WatchMaL group formed

https://mlw.hyperk.ca/program/agenda
https://www.watchmal.org
https://github.com/watchmal
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Convolutional neural networks

Kazu Terao (SLAC)

e γ

https://docs.google.com/presentation/d/1ijtbZjy-VhdEpIPBL2e-bUyMoUT1eZ33kM3ppFiO6pI/edit#slide=id.g566f49d7d9_0_60
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First results

e / γ discrimination
● Tested on Hyper-K Intermediate detector

● 10.4 m tall, 7.4 m diameter, 12,160 x 3” PMTs
● Trained on 300,000 events / particle type
● Simulated at tank centre, varying direction & energy

● Out-of-the-box implementation already looks promising
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Wojciech Fedorko (TRIUMF, Data Scientist)
Julian Ding, Abhishek Kajal (TRIUMF, Co-op Students)
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First results

Multi-ring separation
● Combined simulated e and μ events into multi-ring sample
● Trained network to perform ‘semantic segmentation’ on pixels

● Label PMT hits from e ring, μ ring, or overlap of both
● First attempt okay, but a lot of room for improvement
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Lucas Berns (Toyko Tech.)
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Challenges

Non-trivial detector geometry
● Combining barrel and end-caps of cylindrical tank
● Multi-PMT modules further complicate geometry
● Investigate alternative network architectures

● Sparse submanifold NN or graph NN
● Use physics knowledge to preprocess data

Highly sensitive to data / MC discrepancies
● Techniques to allow training on real data
● Adversarial training prevents training on features in MC but not data

Understanding ‘black-box’ algorithm 
● In principle, calculate systematic errors same as traditional 

reconstruction
● Visualisation of convolutions & layers, investigating marginal events, 

etc. can help understand what the network has learnt
10
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Summary

Improved reconstruction required for future WC measurements
● Complex multi-ring topologies of high-E events
● Improved PID including e / γ discrimination
● Removal of dark noise for low-E events

Machine learning can provide improvements
● CNNs very successful in image processing
● Early results look promising

● e / γ discrimination in simplified simulations
● First attempts at separating overlapping rings

Many remaining challenges
● Work with full cylindrical (and multi-PMT module) tank geometry
● Investigate other network architectures & other reconstruction goals
● Ensure network is not overtraining or learning data / MC differences
● Understand the trained networks for validation and diagnosing issues
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Backup
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Multi-task DNN
Kazu Terao (SLAC)

https://docs.google.com/presentation/d/1ijtbZjy-VhdEpIPBL2e-bUyMoUT1eZ33kM3ppFiO6pI
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● Based on residual learning 
framework introduced in 
arXiv:1512.03385

● The framework provides a solution 
to the degradation problem exposed 
in deep neural networks in which as 
the neural network depth increases, 
the model accuracy gets saturated 
and then degrades rapidly

● 900000 simulated events with 
80-10-10 (training-validation-test) 
split for 10 epochs

● This model can accept images of 
size 16 x 40 x 38 [ Height x Width x 
(2 x #PMTs in mPMT) ] and 
generate softmax output for 3 
classes i.e. P(gamma), P(electron) 
and P(muon).

e/γ Model Architecture : ResNet-18
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Regression of continuous variables

Reconstruct continuous 
quantities (e.g. energy) 
in addition to discrete 
classifications

M. Hartz (TRIUMF), C. Vilela (Stony 
Brook), B. Richards (QMUL)

https://mlw.hyperk.ca/program/talks/watchmal_groupc.pdf
https://mlw.hyperk.ca/program/talks/watchmal_groupc.pdf
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By separating the convolutional layers, the location of filter 
activation can be plotted showing which features the neural net is 
interested in between layers
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Looking inside CNNs
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Looking inside CNNs

https://distill.pub/2017/feature-visualization/

https://distill.pub/2017/feature-visualization/
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Graph CNNs
Kazu Terao (SLAC)

https://docs.google.com/presentation/d/1ijtbZjy-VhdEpIPBL2e-bUyMoUT1eZ33kM3ppFiO6pI
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Submanifold Sparse CNNs

CNN SparseConvNet

arXiv:1706.01307

https://arxiv.org/abs/1706.01307
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Generative networks

Randomly generated images of non-existent people
thispersondoesnotexist.com

Train network on real data, use to generate more samples

Variational autoencoder: Use real data, modify with generative network to 
different event type, etc. More accurate (data-based) MC?

http://thispersondoesnotexist.com

