

JOHN WALKER 2019 CAP CONGRESS 06/06/2019

E61 STATUS AND SENSITIVITY STUDIES

TOKAI TO KAMIOKA (T2K) EXPERIMENT

HYPER-KAMIOKANDE PROJECT

- Next generation water-Cherenkov detector with extensive physics program.
- Hyper-K 1st detector construction funding secured starts in April 2020!
 - Potential for a second tank in Japan or Korea.
- Sensitive at 5σ over a wide range of values of δ_{CP} .
 - Limited by systematic rather than statistical uncertainty.
 - Requires reduction in systematic uncertainties.
- Improvements to near detectors integral to mitigating the effect of neutrino interaction uncertainties (ND upgrade and E61).

NEAR/INTERMEDIATE DETECTOR SUITE

- On-axis detector: monitors beam direction and event rate.
- Off-axis magnetized tracker: charge separation to measure wrong-sign background, flux constraint, and study of recoil system.
- Off-axis angle spanning water-Cherenkov detector: intrinsic backgrounds, electron neutrino cross sections, neutrino energy versus observables, H_20 target, neutron multiplicity measurement.

CONTROLLING BACKGROUNDS FOR CPV MEASUREMENT

Electron (anti)neutrino sample composition:

	Neutrino Candidates	Antineutrino Candidates
Signal	80%	62%
Wrong-sign Background	1%	11%
Intrinsic electron (anti)neutrino & NC	19%	27%

- Aiming for a 1% systematic error contribution from the wrong-sign and intrinsic electron (anti)neutrino and NC background.
- Wrong-sign background must be measured with 9% accuracy.
 - Can be achieved with a magnetized tracking detector.
- Intrinsic electron (anti)neutrino and NC background must be measured with 3% accuracy.
 - Achieved by intermediate water-Cherenkov detector.

NEUTRINO INTERACTION MODEL UNCERTAINTY

- We rely on a neutrino interaction model to reconstruct the neutrino energy from the final state lepton kinematics.
- Non-CCQE processes tend to feed-down to lower neutrino energies.
 - In the muon neutrino and antineutrino analyses this feed-down fills the region of the oscillation maximum and can bias the measurement if not properly modelled.
- Need 5% precision on measurement of feed-down to achieve 3.5% error on $\sin^2\theta_{23}$.

THE E61 DETECTOR

- An intermediate water-Cherenkov detector.
 - Same nuclear target as the far detector.
 - Smaller near to far extrapolation systematic.
- Instrumented portion of the detector moveable through deep cylindrical chamber.
 - Samples neutrino interactions from the J-PARC neutrino beam in the 1-4 degrees off-axis angle range.
- Has optically separated inner and outer volumes.
 - Inner detector: 8 m diameter, 6 m tall.
 - Outer detector: 10 m diameter, 8 m tall.
 - Contains up to 1 GeV muons.
- Tank is populated with multi-PMT (mPMT) modules.
 - Improves resolution of Cherenkov ring.
- Gadolinium doping (0.1% by weight) to measure neutron production in neutrino interactions.

See talk by M. Pavin

LINEAR COMBINATION ANALYSIS

Use off-axis angle dependence of v flux:

- Bin E_v flux spectrum into 60 different off-axis angle slices.
- 2. Take linear combinations of off-axis angle slices to create a neutrino flux of interest e.g. Gaussian.
- Collect distribution of observables for same offaxis angle slices.

Apply coefficients to distribution of observables.

PSEUDO-MONOCHROMATIC BEAMS

 Energy distribution for single muon candidate events after applying linear coefficients for a monochromatic beam centred at 0.9 GeV.

- Can observe the separation of CCQE and non-CCQE (including multi-nucleon) scatters.
 - Directly predict the effect of non-CCQE scatters in oscillation measurements and provide a unique constraint on nuclear models.
- Measure cross sections as function of true neutrino energy.
- Measure cross sections vs true observables Q^2 and ω variables controlling interaction mode.

MUON NEUTRINO DISAPPEARANCE

- Use linear combinations to produce the oscillated far detector neutrino flux between 400 MeV and 1 GeV.
- For each oscillation hypothesis to test, we can find a linear combination of the E61 off-axis fluxes to give the oscillated spectrum.
- Directly compare E61 muon p-theta prediction to observed HK events to obtain oscillation parameters.
- E61 and HK have the same interaction material same interaction cross-section.
 - Reduced dependence on the cross-section model and sensitivity to wrong model choice.
- Background, flux, and acceptance corrections are necessary for HK prediction.
 - Significant uncertainty cancellation in background subtraction.

v_e CROSS-SECTION MEASUREMENT

- Uncertainty on v_{μ} to v_{e} cross-section ratio contributes significantly to total error on CP violation measurement.
- Current uncertainty of 3% is theory motivated. PRD86 (2012) 053003
- Relative v_e flux increases with off-axis angle.
 - Can make a direct measurement of the ve cross section on water with E61.
- Active shielding significantly reduces gamma background.
- In momenta of interest for HK expect a 2% statistical uncertainty, with total uncertainty of <4%.
- Systematic uncertainties dominated by flux and cross section.
 - Expect reduction in uncertainty from improved external flux measurements (EMPHATIC) and cross-section modelling from E61 mono-energetic beam technique.

GADOLINIUM LOADING

- Gadolinium has a high neutron capture cross section.
 - Captures produce ~8 MeV photon cascade.
- Measurement of neutron multiplicity in order to statistical separate v/anti-v interactions.
 - Separate atmospheric neutrino samples.
 - Reduce wrong-sign background for beam samples.
- Can measure the $\mu^+\pi^0$ background from neutrino interactions to improve the $p \rightarrow e^+\pi^0$ proton decay search.
 - Simulation including neutron backgrounds shows 75% tagging efficiency with 92% purity can be achieved.

MULTI-PMT (MPMT) R&D

- Modular approach to PMT instrumentation.
 - Array of small (~3") PMTs rather than one large one.
 - Finer granularity of Cherenkov image.
 - Directional information as each PMT images a different part of the tank - improved vertex resolution.
 - Waterproofing, pressure protection, reduced cabling.
 - Readout electronics, monitoring, calibration devices located in vessel.
- Leveraging lessons learned from KM3NeT.

E61 TEST BEAM EXPERIMENT

- Planning for an initial stage prototype experiment in a charged particle test beam.
 - Known particle type, momentum, track start point.
 - Beam momenta down to ~140 MeV/c are the goal.
 - In discussions with CERN.
- Goals:
 - Test critical components for full E61.
 - Prove bottom-up calibration of WC detector to 1% level.
 - Measure physics processes, such as Cherenkov light profile and pion scattering.
- Aim for data taking in 2021.

SUMMARY

- Future long-baseline oscillation experiments, such as Hyper-K, will be dominated by systematic rather than statistical uncertainty.
 - Feed down effects from unobserved interaction products can bias measurements if not accurately modelled.
 - Difficult to constrain with traditional near detectors as they are exposed to a different flux than the far detector.
 - Improvements to the systematic uncertainty from the current levels are required for a 5σ observation of CP violation by the next generation of experiments.
- E61 provides a novel data-driven method of converting E_{rec} to E_{true} using the off-axis angle linear combination technique.
 - This decouples the flux shape from the interaction model.
- Currently building a multi-PMT prototype before large scale production for a test beam experiment which will characterise the detector response to a known beam of charged particles.

MEASURING NEUTRINO ENERGY

M. Martini NuFACT 2015

Genuine CCQE

N'

N

- Model assumptions play an important role in inferring neutrino energy from detected neutrino-nucleus interaction products.
- In Hyper-K charged lepton kinematics will be measured and CCQE dynamics assumed.
- Large uncertainties from final state and secondary interaction models.
 - Multi-nucleon interactions have two protons exiting a pair of nucleons.
 - Explains larger axial mass preferred by MiniBooNE over NOMAD.
 - Further missing energy from unseen pions.
- Calorimetric measurements suffer from similar model dependence.
 - For example, through uncertainties in the multiplicity of undetected neutrons.

PROJECT STATUS

Year		20)17	7	Π	2018			2019					2020				20	021		2022			2023				2024				2025				202			26	
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Test Experiment Design			H		H									H		H										1	1	_												H
Test Experiment Construction																																								
Test Experiment Operation		F	F		L							F		F		F										4														F
Full Detector Design	H		h													h		h								+							H				_			H
Full Detector Construction	Г	Т	Г	Г	ı	Г	Г	Г			Г	Г		Г	Г	Г	Γ	Г	Г	Г					П	П					П		Г						Г	Г
Full Detector Operation					Ĺ								ĺ				ĺ				Г												1							

- Construction schedule is driven by multi-PMT module production.
- Aim to run the test beam experiment for two years starting 2021.
- Full-scale detector construction concurrent with test experiment operation.
- Aim for full-scale experiment to be taking neutrino data in 2025, one year before the start of Hyper-K.

NEAR DETECTOR CONSTRAINT

- Oscillations result in different fluxes at the near and far detectors.
 - Presents an additional complication in constraining interaction model that predicts far detector event rates.

- We can only measure a convolution of the neutrino flux and cross section.
 - Hard to constrain uncertainties with a traditional near detector.
- Multi-nucleon effects and other missing interaction products can smear the reconstructed neutrino energy into the oscillation dip at the far detector.
 - Results in a bias in the measurement.
 - The bias is obscured by the flux peak at the near detector.

EFFECT OF MULTI-NUCLEON CROSS-SECTION MODELLING

- ▶ T2K study of $\sin^2\theta_{23}$ uncertainty from mis-modelling the 2p-2h part of the cross-section found a significant bias and uncertainty.
- Same study is carried out using NuPRISM near detector fit.
- SK event rate is accurately predicted even with additional 2p-2h interactions added to the toy data.
- The $\sin^2\theta_{23}$ bias and uncertainty are reduced to ~1% with the NuPRISM measurement.
- NuPRISM analysis largely independent of cross-section model.

E61 RECONSTRUCTION PERFORMANCE

- Full detector simulation (Geant4-based WCSim) and reconstruction (fiTQun) developed for E61.
- Studies show good particle identification despite small size of inner detector.
- Quantifying reconstruction/PID improvements for mPMTs vs 8" PMTs.
- Ongoing reconstruction improvements:
 - Improve PMT angular response function.
 - Include PMT direction information to scattered and reflected light prediction.

Better granularity
Same event, simulated with 8" PMTs
(above) and mPMTs (below)

T2K NEUTRINO FLUX

- Very low $\nu_{\rm e}\left(\overline{\nu}_{\rm e}\right)$ contamination.
 - Less than 1% at oscillation maximum.
 - An irreducible background to $\nu_{\rm e}\left(\overline{\nu}_{\rm e}\right)$ appearance.
- Wrong sign contamination more significant in antineutrino mode.
- Near and far flux shapes are not identical, but highly correlated.

MULTI-NUCLEON MODELS

- Many different theoretical models.
- Martini et al. and Nieves et al. calculations are both consistent with MiniBooNE data within the MiniBooNE flux uncertainties.
- ▶ The np-nh contributions can differ by a factor of 2 in the region of interest.
- Predict different rates for neutrinos vs anti-neutrinos.
- ▶ Hard to separate models experimentally.

PHASE 0

- Instrumented portion of phase 1 is placed in a water tank near ND280.
- Allows us to demonstrate detector/calibration precision.
- Provides a test detector for Hyper-K R&D.
- Physics goals:
 - ▶ Measure $\sigma(\nu_e)/\sigma(\nu_\mu)$ to ~3% precision.
 - Expect ~5500 ν_e events below 1 GeV in 1x10²¹ POT with 76% purity.
 - Gd loading to measure neutron multiplicities in neutrino-nucleus interactions.
- A range of locations being studied.
 - Optimise flux uncertainties and flux ratios.
 - Investigating feasibility of construction.

PROPOSED EXTENDED RUN OF T2K (T2K-II)

CURRENT T2K SYSTEMATIC ERRORS

▶ Systematic uncertainty at the 6% level. Need reduction to \sim 3% level for Hyper-K.

Source of uncertainty	μ -like $\delta\left(\frac{\#\nu\text{-mode}}{\#\bar{\nu}\text{-mode}}\right) / \left\langle\frac{\#\nu\text{-mode}}{\#\bar{\nu}\text{-mode}}\right\rangle$	e -like $\delta\left(\frac{\#\nu\text{-mode}}{\#\bar{\nu}\text{-mode}}\right) / \left\langle\frac{\#\nu\text{-mode}}{\#\bar{\nu}\text{-mode}}\right\rangle$
SKDet	0.07%	1.6%
FSI+SI	2.6%	3.6%
Flux	1.8%	1.8%
Flux+XSec (ND280 constrained)	1.9%	2.2%
XSec NC other (uncorr)	0.0%	0.2%
XSec NC 1γ (uncorr)	0.0%	1.5%
XSec ν_e / ν_μ (uncorr)	0.0%	3.1%
Flux+XSec	1.9%	4.1%
All	3.2%	5.8%

- **>** CP violation measurement depends on uncertainty of $\nu_{\rm e}/\overline{\nu}_{\rm e}$ ratio.
- Dominant uncertainties:
 - Final state interactions (FSI) and secondary interactions (SI) nuclear model extrapolated from pion-nucleus scattering experiments.
 - Electron/muon neutrino cross-section ratio need data in energy range of interest, low statistics and large background for electron samples.
 - ▶ ND280 flux + cross-section constraint affected by nuclear model uncertainties.

TRACKING DETECTOR UPGRADES

- ND280 upgrade:
 - Horizontal High Angle TPCs (HA TPCs) to improve high angle tracking.
 - SuperFGD: fine-granularity scintillator detector as an active neutrino target.
 - Time of flight detector
 - Precise timing of tracks detected in the TPC determines particle direction.
- NINJA
 - Nuclear emulsion detector measuring neutrino-nucleus interactions.
 - Water target may be installed as a hybrid detector with ND280.
 - Measure v_e interactions and anti-v_e interactions separately.
- High Pressure TPC (HP TPC)
 - Improved reconstruction of low energy hadrons in the final state recoil system and better reconstruction of photon conversions.

