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Metallic vessel filled with a noble gas
mixture, with a single high voltage

anode/sensor

Low-A target atoms increases
sensitivity to low-mass

WIMPs

Spherical Proportional Counters (SPCs) to search for low-mass dark matter

1 GeV WIMP, different targets



The NEWS-G dark matter experiment
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Spherical Proportional Counters (SPCs) to search for low-mass dark matter

Metallic vessel filled with a noble gas
mixture, with a single high voltage

anode/sensor

Low-A target atoms increases
sensitivity to low-mass

WIMPs

Low intrinsic capacitance:
(C ≈ 0.3 pF)

High amplification gain
from Townsend avalanche

Energy thresholds of ~10 eV!



PRELIMINARY

NEWS-G

@ SNOLAB

Preparing for NEWS-G @ SNOLAB
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Assumptions:
Ne + 10% CH4, Exposure: 20 kg days, F = 0.2, θ = 0.12,
SRIM quenching factor, Background: 1.78 dru, ROI: 14 eVee - 1 keVee

Median of 500 MCs, Optimum Interval Method

NEWS-G is preparing to install a new detector at SNOLAB

Expected to be sensitive to WIMP masses ~100 MeV using H-rich gas
and an energy threshold < 50 eV

Currently being tested at the

Laboratoire Souterrain de Modane



Preparing for NEWS-G @ SNOLAB
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Much of our sensitivity at these WIMP masses derives from 1e- events:

Therefore characterization of our single electron response is essential!

H Ne Ne + 10% CH4



What is our single-electron response?
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The distribution of the number of avalanche
pairs “S” is roughly exponential

It is known to be well-described by the Polya
distribution, with shape parameter θ:

S/<G>

» J. Derré et al, NIM A 449, 314 - 321 (2000).
» T.  Zerguerras et al, NIM A 608, 397 - 402 (2009).
» M.  Kobayashi et al, NIM A 845, 236 - 240 (2017).
» R. Bellazzini et al, NIM A 581,  246 - 253 (2007).



UV laser setup

Daniel Durnford              CAP Congress 2019                 7/26

Q. Arnaud et al. (NEWS-G Collaboration), Precision laser-based measurements of the
single electron response of spherical proportional counters for the NEWS-G light dark

matter search experiment, Phys. Rev. D 99, 102003 (2019)



UV laser setup
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A powerful UV laser
capable of extracting

100s of electrons

Tunable transmission
to control the mean
number of electrons

Parallel photo-detector
to tag laser events

Common DAQ for
timing analysis

between two channels

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)



N photo-electrons are extracted from the
surface of the sphere: Poisson

Laser response model
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N photo-electrons are extracted from the
surface of the sphere: Poisson

The electrons drift/diffuse towards
the anode

Laser response model
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N photo-electrons are extracted from the
surface of the sphere: Poisson

The electrons drift/diffuse towards
the anode

Each photo-electron creates S
avalanche pairs:
Nth convolution of Polya

Laser response model
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If each avalanche is independent,
then the overall avalanche response is

the Nth convolution of the single-
avalanche response



N photo-electrons are extracted from the
surface of the sphere: Poisson

The electrons drift/diffuse towards
the anode

Each photo-electron creates S
avalanche pairs:
Nth convolution of Polya

Sum the contributions of all
N photo-electrons

Laser response model
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N photo-electrons are extracted from the
surface of the sphere: Poisson

The electrons drift/diffuse towards
the anode

Each photo-electron creates S
avalanche pairs:
Nth convolution of Polya

Sum the contributions of all
N photo-electrons

The overall response is
convolved with a
Gaussian to model baseline noise

Laser response model
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Single electron response characterization

Daniel Durnford              CAP Congress 2019               14/26

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)



Single electron response characterization
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Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

Data Parameters:

Ne + 2% CH4
P = 1.5 bar
HV = 1200V

Fit results:

θ = 0.09 ±0.02
<G> = 30.26 ± 0.21
ADU
χ2/ndf = 0.97

The fit works for large values of μ as
well as small, despite the degeneracy

between contributions

The excellent fit validates the response model. Binned log-likelihood:



Single electron response characterization
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Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

The excellent fit validates the response model. Binned log-likelihood:

Data Parameters:

Ne + 2% CH4
P = 1.5 bar
HV = 1200V

Fit results:

θ = 0.09 ±0.02
<G> = 30.26 ± 0.21
ADU
χ2/ndf = 0.97

The fit works for large values of μ as
well as small, despite the degeneracy

between contributions



Detector monitoring
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Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

The laser can be used to
monitor the detector response

during physics runs

37Ar 2.82 keV peak with correction

37Ar 2.82 keV peak

Laser events

Long-term fluctuations in gain can be
caused by temperature changes, O2

contamination, sensor damage...

Laser monitoring data could even be used
to correct for long-term fluctuations



The laser can measure the drift time
and diffusion (dispersion in drift time)
of surface electrons:

The drift time is time delay between
photo-detector and SPC events

Electron drift time from sphere surface
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Drift time ~100 μs

The laser can measure the drift time
and diffusion (dispersion in drift time)
of surface electrons:

The drift time is time delay between
photo-detector and SPC events

Electron drift time from sphere surface
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Electron drift time from sphere surface
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Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

The laser can measure the drift time
and diffusion (dispersion in drift time)
of surface electrons:

The drift time is time delay between
photo-detector and SPC events

Very sensitive to E-field structure, gas
conditions



Electron drift time from sphere surface
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Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018)

Simulated surface events Simulated volume events

A way to validate electron transport simulations, monitor efficiency of fiducialization cuts

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

The laser can measure the drift time
and diffusion (dispersion in drift time)
of surface electrons:

The drift time is time delay between
photo-detector and SPC events

Very sensitive to E-field structure, gas
conditions



Trigger efficiency
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Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

The laser can be used to
directly measure the efficiency

of our triggering algorithm

Method 1:
SPC-triggered spectrum divided by
photo-detector triggered spectrum (this
does not account for null laser events)

Method 2:
Fit total spectrum (0 PE + > 0 PE
events), then fit > 0 PE spectrum
multiplied by error function with <G>,
θ, and σ fixed.

Demonstration of ~10 eV
energy threshold:

16 eV in this example



37Ar measurements
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L-Shell: 270 eV

K-Shell: 2.82 keV

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

37Ar gas was also injected into the SPC, produced in collaboration with the Royal
Military College of Canada with a SLOWPOKE-2 reactor:

D.G. Kelly et al, J. Radioanal. Nucl. Chem. 318, 279 (2018)



37Ar measurements
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A test of our model for primary ionization -
D. Durnford et al, Phys. Rev. D 98, 103013 (2018)

Also allowed for measurements of the W-
value, Fano factor of this gas mixture at
different energies:

At 270 eV:
W = 27.6 eV/pair
F = 0.26

At 2.82 keV:
W = 27.6 eV/pair*
F = 0.19

Best-fit values

*The W-value at 2.82 keV was
calculated directly from <G> and
fixed for this fit

Distribution of Primary Ionization (μ = 2)

N

P
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 | 

μ
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Future work

Daniel Durnford              CAP Congress 2019               25/26

2
1
3
 n

m
 L

a
s
e
r

In addition to playing a crucial role with NEWS-G at SNOLAB...

 - The laser + 37Ar will be used to carry out extensive measurement campaigns of W-
values and Fano factors for different gas mixtures, pressures, at multiple energies

 - An aim-able laser fiber would allow direct validation of our finite-element simulations
of sphere field structure



Queen’s University Kingston - G Gerbier, P di Stefano, R Martin, G Giroux, S Crawford, M Vidal, G Savvidis, A Brossard,
F Vazquez de Sola, Q Arnaud, K Dering, J McDonald, M Chapellier, A Ronceray, P Gros, A Rolland, C Neyron, JF Caron
  - Copper vessel and gas set-up specifications, calibration, project management
  - Gas characterization, laser calibration on smaller scale prototypes
  - Simulations/Data analysis

IRFU (Institut de Recherches sur les Lois fondamentales de l’Univers)/CEA Saclay - I Giomataris, M Gros,
T Papaevangelou, JP Bard, JP Mols
  - Sensor/rod (low activity, optimization with 2 electrodes)
  - Electronics (low noise preamps, digitization, stream mode)
  - DAQ/soft

LSM (Laboratoire Souterrain de Modane), IN2P3, U of Chambéry - M Zampaolo, A DastgheibiFard
  - Low activity archaeological lead
  - Coordination for lead/PE shielding and copper sphere

Aristotle University of Thessaloníki - I Savvidis, A Leisos, S Tzamarias
  - Simulations, neutron calibration
  - Studies on sensor

LPSC (Laboratoire de Physique Subatomique et Cosmologie) Grenoble - D Santos, JF Muraz, O Guillaudin
  - Quenching factor measurements at low energy with ion beams

Pacific Northwest National Laboratory - E Hoppe, R Bunker
  - Low activity measurements, copper electro-forming

RMCC (Royal Military College of Canada) Kingston - D Kelly, E Corcoran
  - 37Ar source production, sample analysis

SNOLAB Sudbury - P Gore, S Langrock
  - Calibration system/slow control

University of Birmingham - K Nikolopoulos, P Knights, I Katsioulas,
R Ward
  - Simulations, analysis, R&D

University of Alberta - MC Piro, D Durnford
  - Gas purification, data analysis

Associated labs: TRIUMF - F Retiere

Thank you!

The NEWS-G Collaboration
(November 2018)
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New frontier in WIMP parameter space
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Minuscule energies:
Recoils of ER ~ 1 keV

Low-m
ass

1 GeV WIMP, different targetsNeon target, different WIMP masses

Low energy threshold

Low-A target atom



Principle of operation
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χ (1) Primary Ionization

(2) Drift of charges

Typical drift time surface -> sensor :
~ 100 µs

(3) Avalanche of secondary e-/ion pairs

Amplification of signal through
Townsend avalanche (tunable with V)

(4) Signal formation

Current induced by the secondary ions
drifting away from anode

(5) Signal readout

Induced current integrated by a charge
sensitive pre-amplifier and digitized

Neon: Wγ ~ 36 eV/pair
Q ~ 0.2

Ions

e-

e-

e-

Single electron pulse:



Rise time
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Gaussian dispersion in arrival time
due to diffusion of charges:

Rise time used for surface event
discrimination

Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018).



Event simulation
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1) Electric field model from finite
element software (COMSOL)

2) Drift of charges simulated with
inputs from Magboltz

3) Energy response simulated
(see slide 17)

4) Pulses simulated: pre-amp
response, ion current, noise

5) Same treatment as real data

Simulated 150 eVee Event

Real 150 eVee Event



Event simulation
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1) Electric field model from finite
element software (COMSOL)

2) Drift of charges simulated with
inputs from Magboltz

3) Energy response simulated
(see slide 17)

4) Pulses simulated: pre-amp
response, ion current, noise

5) Same treatment as real data



Pulse treatment
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10 keVee

deconvolved
pulse

Deconvolve for amplifier response
and ion-induced current10 keVee raw pulse



Detector response model
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Analytical model of detector energy response:

Using the COM-Poisson distribution for primary and Polya for secondary ionization:

D. Durnford et al. Phys. Rev. D98, 103013 (2018)



Accounting for the Fano factor
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Neon experiment
modelled with COM-
Poisson + Gaussian
resolution

F can
have a big
impact!

(i.e. CCD detectors
like DAMIC)

We can use this tool to assess the impact on low-mass DM experiments



Accounting for the Fano factor
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Neon experiment
modelled with COM-
Poisson + Polya, 1e-

to 1 keVnr energy
window

We can use this tool to assess the impact on low-mass DM experiments

...but
probably
won’t for
NEWS-G
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The Polya distribution



Laser power fluctuations
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~10% dispersion in laser pulse size

The laser power varies O(10%) from pulse to pulse

We deal with this problem by dividing data into subsets with fixed photo-detector
amplitude ±5%



Laser power fluctuations
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The laser power varies O(10%) from pulse to pulse

We deal with this problem by dividing data into subsets with fixed photo-detector
amplitude ±5%

We disentangle the photo-detector resolution from laser power fluctuations by
testing against a second photo-detector

Resolution of photo-detector is
small compared to power
fluctuations



Data with varying laser intensity
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Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

This allows for combined fitting of data subsets, as well as data with different laser intensities:

The expected # of PE
varies linearly with
laser intensity

Single and joint fits are in agreement

Individual Fits Joint Fits

θ
μ

χ
2
/N

D
F

<
G

>

PD Amplitude [ADU] PD Amplitude [ADU]

PD Amplitude [ADU] PD Amplitude [ADU]



Subdividing data sets
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Subdividing data sets
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Varying field strength
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Production of 37Ar
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D.G. Kelly et al. Journal of Radioanalytical and Nuclear
Chemistry 318(1), 279 (2018).

SLOWPOKE-II Reactor at
the Royal Military College
of Canada

Collaborators at the RMCC produce samples with a fission reactor:

Source produced in an oxygen-free environment

Counting of gaseous and solid by-products
allows for indirect measurement of 37Ar
production

40Ca(n,α)37Ar
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