The single electron response of NEWS-G Spherical Proportional Counters

Daniel Durnford

CAP Congress 2019 June 5th

The NEWS-G dark matter experiment

Spherical Proportional Counters (SPCs) to search for low-mass dark matter

The NEWS-G dark matter experiment

Spherical Proportional Counters (SPCs) to search for low-mass dark matter

Preparing for NEWS-G @ SNOLAB

NEWS-G is preparing to install a new detector at SNALAB

Expected to be sensitive to WIMP masses ~100 MeV using H-rich gas and an energy threshold < 50 eV

Ne + 10% CH₄ Exposure: 20 kg days, F = 0.2, $\theta = 0.12$,

SRIM quenching factor, Background: 1.78 dru, ROI: 14 eVee - 1 keVee

Median of 500 MCs, Optimum Interval Method

Preparing for NEWS-G @ SNOLAB

Much of our sensitivity at these WIMP masses derives from 1e⁻ events:

Therefore characterization of our single electron response is essential!

What is our single-electron response?

Visualisation of a Townsend Avalanche

The distribution of the number of avalanche pairs "S" is roughly exponential

It is known to be well-described by the Polya distribution, with shape parameter θ :

$$P_{\text{Polya}}(S|\langle G \rangle, \theta) = \frac{1}{\langle G \rangle} \left(\frac{(1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \right) \times \left(\frac{S}{\langle G \rangle} \right)^{\theta} \exp\left(-(1+\theta) \frac{S}{\langle G \rangle} \right)$$

- » J. Derré et al, NIM A 449, 314 321 (2000).
- » T. Zerguerras et al, NIM A 608, 397 402 (2009).
- » M. Kobayashi et al, NIM A 845, 236 240 (2017).
- » R. Bellazzini et al, NIM A 581, 246 253 (2007).

UV laser setup

Q. Arnaud et al. (NEWS-G Collaboration), *Precision laser-based measurements of the single electron response of spherical proportional counters for the NEWS-G light dark matter search experiment*, Phys. Rev. D 99, 102003 (2019)

UV laser setup

N photo-electrons are extracted from the surface of the sphere: Poisson $P_{\text{Poisson}}(N|\mu) = \frac{e^{-\mu}\mu^N}{N!}$ Photodetector 213 nm Laser

N photo-electrons are extracted from the surface of the sphere: Poisson The electrons drift/diffuse towards Photodetector the anode 213 nm Laser

N photo-electrons are extracted from the surface of the sphere: Poisson

The electrons drift/diffuse towards the anode

Each photo-electron creates S avalanche pairs: Nth convolution of Polya

If each avalanche is independent, then the overall avalanche response is the Nth convolution of the singleavalanche response

ards ards
$$\frac{(1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \sqrt[N]{\left(\frac{S}{\langle G \rangle}\right)^{N(1+\theta)-1}}$$

$$P_{\text{Polya}}^{(N)}(S|\langle G \rangle, \theta) = \frac{1}{\langle G \rangle} \left(\frac{(1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \right)^{N} \left(\frac{S}{\langle G \rangle} \right)^{N(1+\theta)-1} \times \exp\left(-(1+\theta) \left(\frac{S}{\langle G \rangle} \right) \right) \times \prod^{N-1} B\left((j+j\theta), (1+\theta) \right)$$

N photo-electrons are extracted from the surface of the sphere: Poisson

The electrons drift/diffuse towards

the anode

Each photo-electron creates S avalanche pairs: Nth convolution of Polya

Sum the contributions of all N photo-electrons

N=1

N photo-electrons are extracted from the surface of the sphere: Poisson

The electrons drift/diffuse towards

the anode

Each photo-electron creates *S* avalanche pairs:

Nth convolution of Polya

Sum the contributions of all N photo-electrons

The overall response is convolved with a Gaussian to model baseline noise

$$\mathcal{P}\left(E|\mu,\langle G\rangle,\theta,\sigma\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} f\left(E'\right) e^{\frac{-\left(E-E'\right)^2}{2\sigma^2}} dE'$$

Single electron response characterization

Single electron response characterization

The excellent fit validates the response model. Binned log-likelihood:

$$\mathcal{L}\left(\mathbf{n}|\left\langle\mathbf{G}\right\rangle, \theta, \sigma, \mu\right) = -\mu \sum_{i=1}^{n_{\text{bins}}} n_i \log \left(n_{\text{Total}} \int_{\Delta_i} \mathcal{P}\left(E'\right) dE'\right)$$

Data Parameters:

Ne + 2% CH4

P = 1.5 bar

HV = 1200V

Fit results:

 $\theta = 0.09 \pm 0.02$

 $\langle G \rangle = 30.26 \pm 0.21$

ADU

 χ^2 /ndf = 0.97

Single electron response characterization

The excellent fit validates the response model. Binned log-likelihood:

$$\mathcal{L}\left(\mathbf{n}|\left\langle\mathbf{G}\right\rangle, \theta, \sigma, \mu\right) = -\mu \sum_{i=1}^{n_{\text{bins}}} n_i \log \left(n_{\text{Total}} \int_{\Delta_i} \mathcal{P}\left(E'\right) dE'\right)$$

Data Parameters:

Ne + 2% CH4

P = 1.5 bar

HV = 1200V

Fit results:

 $\theta = 0.09 \pm 0.02$

 $\langle G \rangle = 30.26 \pm 0.21$

ADU

 χ^2 /ndf = 0.97

Detector monitoring

The laser can be used to monitor the detector response during physics runs

Long-term fluctuations in gain can be caused by temperature changes, O₂ contamination, sensor damage...

Laser monitoring data could even be used to correct for long-term fluctuations

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

The laser can measure the drift time and diffusion (dispersion in drift time) of surface electrons:

The drift time is time delay between photo-detector and SPC events

The laser can measure the drift time and diffusion (dispersion in drift time) of surface electrons:

The drift time is time delay between photo-detector and SPC events

The laser can measure the drift time and diffusion (dispersion in drift time) of surface electrons:

The drift time is time delay between photo-detector and SPC events

Very sensitive to E-field structure, gas conditions

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

The laser can measure the drift time and diffusion (dispersion in drift time) of surface electrons:

The drift time is time delay between photo-detector and SPC events

Very sensitive to E-field structure, gas conditions

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

A way to validate electron transport simulations, monitor efficiency of fiducialization cuts

Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018)

Trigger efficiency

The laser can be used to directly measure the efficiency of our triggering algorithm

Method 1:

SPC-triggered spectrum divided by photo-detector triggered spectrum (this does not account for null laser events)

Method 2:

Fit total spectrum (0 PE + > 0 PE events), then fit > 0 PE spectrum multiplied by error function with <G>, θ , and σ fixed.

Demonstration of ~10 eV energy threshold: 16 eV in this example

Q. Arnaud et al. (NEWS-G), Phys. Rev. D 99, 102003 (2019)

³⁷Ar measurements

³⁷Ar gas was also injected into the SPC, produced in collaboration with the Royal Military College of Canada with a SLOWPOKE-2 reactor:
 D.G. Kelly et al, J. Radioanal. Nucl. Chem. 318, 279 (2018)

³⁷Ar measurements

24/26

$$f\left(E'\right) = \sum_{N=1}^{N_{\text{max}}} P_{\text{CMP}}(N|\mu, F) \times P_{\text{Polya}}^{(N)}\left(E'|\langle G \rangle, \theta\right)$$

Also allowed for measurements of the W-value, Fano factor of this gas mixture at different energies:

*The W-value at 2.82 keV was calculated directly from <G> and fixed for this fit

In addition to playing a crucial role with NEWS-G at SNOLAB...

- The laser + ³⁷Ar will be used to carry out extensive measurement campaigns of W-values and Fano factors for different gas mixtures, pressures, at multiple energies
- An aim-able laser fiber would allow direct validation of our finite-element simulations of sphere field structure

Thank you!

Queen's University Kingston - G Gerbier, P di Stefano, R Martin, G Giroux, S Crawford, M Vidal, G Savvidis, A Brossard, F Vazquez de Sola, Q Arnaud, K Dering, J McDonald, M Chapellier, A Ronceray, P Gros, A Rolland, C Neyron, JF Caron

- Copper vessel and gas set-up specifications, calibration, project management
- Gas characterization, laser calibration on smaller scale prototypes
- Simulations/Data analysis

IRFU (Institut de Recherches sur les Lois fondamentales de l'Univers)/CEA Saclay - I Giomataris, M Gros,

T Papaevangelou, JP Bard, JP Mols

- Sensor/rod (low activity, optimization with 2 electrodes)
- Electronics (low noise preamps, digitization, stream mode)
- DAQ/soft

LSM (Laboratoire Souterrain de Modane), IN2P3, U of Chambéry - M Zampaolo, A DastgheibiFard

- Low activity archaeological lead
- Coordination for lead/PE shielding and copper sphere

Aristotle University of Thessaloníki - I Savvidis, A Leisos, S Tzamarias

- Simulations, neutron calibration
- Studies on sensor

LPSC (Laboratoire de Physique Subatomique et Cosmologie) Grenoble - D Santos, JF Muraz, O Guillaudin

- Quenching factor measurements at low energy with ion beams

Pacific Northwest National Laboratory - E Hoppe, R Bunker

- Low activity measurements, copper electro-forming

RMCC (Royal Military College of Canada) Kingston - D Kelly, E Corcoran

- ³⁷Ar source production, sample analysis

SNOLAB Sudbury - P Gore, S Langrock

- Calibration system/slow control

University of Birmingham - K Nikolopoulos, P Knights, I Katsioulas,

R Ward

- Simulations, analysis, R&D

University of Alberta - MC Piro, D Durnford

- Gas purification, data analysis

Associated labs: TRIUMF - F Retiere

The NEWS-G Collaboration (November 2018)

Extra Slides

New frontier in WIMP parameter space

Principle of operation

(1) Primary Ionization

$$\langle \#PE \rangle = \frac{E}{W(E)}$$

 $W_{
m nr} = W_{\gamma}/Q(E)$ Neon: W_y ~ 36 eV/pair Q ~ 0.2

(2) Drift of charges

Typical drift time surface -> sensor : ~ 100 µs

(3) Avalanche of secondary e⁻/ion pairs

Amplification of signal through Townsend avalanche (tunable with V)

(4) Signal formation

Current induced by the secondary ions drifting away from anode

(5) Signal readout

Induced current integrated by a charge sensitive pre-amplifier and digitized

Rise time

Gaussian dispersion in arrival time due to diffusion of charges:

$$\sigma(r) = \left(\frac{r}{r_{sphere}}\right)^3 \times 20\mu s$$

Rise time used for surface event discrimination

Q. Arnaud et al. (NEWS-G), Astropart. Phys. 97, 54 (2018).

Event simulation

CEEEE

- 1) Electric field model from finite element software (COMSOL)
- 2) Drift of charges simulated with inputs from Magboltz
- 3) Energy response simulated (see slide 17)
- 4) Pulses simulated: pre-amp response, ion current, noise
- 5) Same treatment as real data

Simulated 150 eV_{ee} Event

Real 150 eV_{ee} Event

Event simulation

- 1) Electric field model from finite element software (COMSOL)
- 2) Drift of charges simulated with inputs from Magboltz
- 3) Energy response simulated (see slide 17)
- 4) Pulses simulated: pre-amp response, ion current, noise
- 5) Same treatment as real data

Pulse treatment

E6

Detector response model

Analytical model of detector energy response:

$$\frac{dR}{dE}(E_{ee}) = \int_{0}^{E_{\text{max}}} \frac{dR}{dE}(E_{nr}) \times \sum_{N=0}^{N_{\text{max}}} \left[P_{\text{COM}} \left(N | \mu, F \right) \times P_{\text{Polya}}^{(N)} \left(E_{ee} | \theta, \langle G \rangle \right) \right] dE_{nr}$$

$$N_{\text{max}} = \left\lfloor \frac{E_{nr}}{I} \right\rfloor \quad \mu = E_{nr} \times \left(\frac{Q(E_{nr})}{W(E_{nr})} \right)$$

Using the COM-Poisson distribution for primary and Polya for secondary ionization:

D. Durnford et al. Phys. Rev. D98, 103013 (2018)

$$P(x|\lambda,\nu) = \frac{\lambda^x}{(x!)^{\nu} Z(\lambda,\nu)}$$
$$Z(\lambda,\nu) = \sum_{j=0}^{\infty} \frac{\lambda^j}{(j!)^{\nu}} \quad \lambda \in \{\mathbb{R} > 0\}, \quad \nu \in \{\mathbb{R} \ge 0\}$$

Accounting for the Fano factor

We can use this tool to assess the impact on low-mass DM experiments

Accounting for the Fano factor

We can use this tool to assess the impact on low-mass DM experiments

...but probably won't for NEWS-G

Neon experiment modelled with COM-Poisson + Polya, 1e⁻ to 1 keV_{nr} energy window

The Polya distribution

Daniel Durnford

Modeling of the detector response to N electrons

Laser power fluctuations

The laser power varies O(10%) from pulse to pulse

We deal with this problem by dividing data into subsets with fixed photo-detector amplitude ±5%

Laser power fluctuations

The laser power varies O(10%) from pulse to pulse

We deal with this problem by dividing data into subsets with fixed photo-detector amplitude ±5%

We disentangle the photo-detector resolution from laser power fluctuations by testing against a second photo-detector

Data with varying laser intensity

This allows for combined fitting of data subsets, as well as data with different laser intensities:

Subdividing data sets

To assess the systematic uncertainty associated with the non-fixed value of mu

```
Simulate 1000 MC (toy data sets) {
           For each MC, Simuate 1e6 events{
                       For each event{
                            Amplitude simulated with fixed Gain, theta and sigma
                            but with mu drawn randomly between 95% and 105% of mu
           Fit the data and save best fit values
                                        Distribution of best fit values
                                                                                                            40.02
                                                                                                    Std Dev
                                                                                                           0.1032
                          mu
                                                                                   Gain
                                            Entries
                                            Mean
                                                   0.2011
                                                                                                    Mean
                                                                                                           0.9836
0.0947
                         theta
                                                                                Chi2 / NDF
```


Assess the systematic uncertainty associated with non-fixed mu

The bias induced by +-5 % fluctuations of mu on the reconstruction of the mean gain is extremely small

$$\frac{P\left(N\left|\mu\left(1+\varepsilon\right)\right)+P\left(N\left|\mu\left(1-\varepsilon\right)\right)\right.}{2}\sim P\left(\left.N\left|\mu\right.\right)\times\left(1+\frac{\varepsilon^{2}}{2}\left(N^{2}-3\left.N+1\right)\right)\right.$$

For +- 5 % fluctuations:

$$\frac{P\left(N\,|\,1.05\,\mu\right)+P\left(\,N\,|\,0.95\,\mu\right)}{2}\sim P\left(\,N\,|\,\mu\right)\times\left(1+0.00125\times\left(\,N^{2}-3\,N\,+1\,\right)\right)$$

(Ne,2%CH4, 1.5 bar), Ar 37, Laser 150 A, 100% Transmission

Increase of HV1 -> increase of the field -> Decrease of drift time and diffusion time (as expected)

Production of ³⁷Ar

Collaborators at the RMCC produce samples with a fission reactor:

40 Ca(n, α) 37 Ar

Source produced in an oxygen-free environment

Counting of gaseous and solid by-products allows for indirect measurement of ³⁷Ar production

D.G. Kelly et al. Journal of Radioanalytical and Nuclear Chemistry 318(1), 279 (2018).