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* Biophysics: study of biological systems (by physicists)
* Biological systems are out of thermodynamic equilibrium

H-I—

“Nonequilibrium boundary conditions”

Life
ADP + P;

Entropy production

* Quantifying flows of energy (and other things) in nanoscale systems is a
central challenge to understanding microscopic physics of biological systems
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* What are the implications for molecular machines like ATP-synthase?
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