

1

Stable longitudinal spin domains in a nondegenerate ultracold gas

CAP Congress

Sean D. Graham, D. Niroomand, J. M. McGuirk

Simon Fraser University

June 5, 2019

Spin diffusion

PRL 89, 090402 (2002)

Nature 472, 201 (2011)

Science 363, 383 (2019)

Why should we care about spin diffusion?

- Use spin to carry information
- Spintronics: developing devices that use spin instead of charge (MRAM)
- Fundamental knowledge transferable to similar non-equilibrium systems

1D spin diffusion with ultracold gases

- Quasi-1D rubidium-87 system (37:1 pencil shaped trap)
- Cloud size is ~ 1 mm in axial direction
- Peak densities of $\sim 1.4 imes 10^{13} \ {
 m cm}^3$
- Nondegenerate clouds $T \sim 650 \text{ nK} (T \sim 2T_C)$
- Spin manipulation performed with two-photon pulses (RF and μ W)

Modifying spin diffusion

Identical spin rotation effect (ISRE)

Modifying spin diffusion

Identical spin rotation effect (ISRE)

Phase difference between transverse spin states Conversion of transverse to longitudinal spin

Local Larmor precession

Cloud parameters

- Leggett-Rice parameter (temperature)
- Mean free path (density)

Longitudinal spin domains

Helical spin domain

Detection: Absorption imaging

- Destructive \rightarrow 2 images
- Combine images to get spin profile (green) or atomic profile (black)

Longitudinal spin diffusion

- Collect a spin profile (2 images) at various times
- Stitch images together to view diffusion

 $T = 650 \text{ nK}, n_0 = 1.4 \times 10^{13} \text{ cm}^{-3}$ 500 Time (ms) M_{\parallel} -350 Axial position (µm) 350 $au_{
m classical} \sim 25 \ {
m ms}$, $au_{
m trap} \sim 150 \ {
m ms}$

slowed diffusion due to ISRE

SFU

Longitudinal spin diffusion

- Collect a spin profile (2 images) at various times
- Stitch images together to view diffusion

$T = 650 \text{ nK}, n_0 = 1.4 \times 10^{13} \text{ cm}^{-3}$ 500 Time (ms) M_{\parallel} trap period classical diffusion -350 Axial position (um) 350 $au_{ m classical} \sim 25 \ { m ms}$, $au_{ m trap} \sim 150 \ { m ms}$

slowed diffusion due to ISRE

SFU

Effective magnetic field

Tuning the local Larmor precession

- Laser AC Stark shifts spin states
- Creates a differential potential U_{diff}
- Draw linear $U_{\rm diff}$ pattern with AOM

Acousto-optical modulator (AOM)

Effective magnetic field

Tuning the local Larmor precession

- Laser AC Stark shifts spin states
- Creates a differential potential U_{diff}
- Draw linear U_{diff} pattern with AOM

Acousto-optical modulator (AOM)

Measuring U_{diff}

 $U_{
m diff}$ is small relative to thermal energy $k_B T/h \sim 350 U_{
m diff}$

Stabilizing a longitudinal spin domain

Stabilizing a longitudinal spin domain

350

Axial position (um)

U_{diff}

10 --350

Stabilizing a longitudinal spin domain

What about the transverse spin?

G = 50 Hz/mm

- ► Transverse spin coherently transfers spin from |1⟩ to |2⟩
- Decoupled macroscopic spin dynamics

Spin wave within domain wall

Is this spin-charge separation?

Is this spin-charge separation?

in magnetic trap

Neutral atoms, so no charge

- Spin-density separation: similar to lattice systems, but our density distribution is fixed by initial conditions
- This work is an example of spin-carrier separation

Spin-charge separation in SrCuO₂

PRL 77, 4054 (1996)

arXiv:1905.13638

Conclusion and Acknowledgements

- Small effective magnetic fields can lead to large changes in spin diffusion
- Stabilize spin domains with linear effective magnetic fields
- Macroscopically decoupled longitudinal and transverse spin diffusion

Collaborators

Experiment (SFU): Dorna Niroomand Jeffrey M. McGuirk

Theory (University of Wisconsin - La Crosse): Robert J. Ragan