Interplay between native state topology and sequence in two-state protein folding

CAP Annual Congress

Simon Fraser University June 4 2018

Daniel Trotter, Stefan Wallin

Department of Physics and Physical Oceanography, St John's, Newfoundland

Two-state protein folding

- Many globular proteins of ~50-120 amino acids
- Two structurally distinct states, U and N, separated by a single free energy barrier (TS)
- Minimal models for folding.

Folding rate $k_f \propto \exp(-\Delta G/k_BT)$

Effects of topology and sequence on protein folding

Topology. Folding rates k_f span ~6 orders of magnitude

Higher number of "local" vs "nonlocal" contacts means higher folding rate.

RCO = average sequence separation |i - j| between contacts ij in native structure.

Sequence. Effects pronounced for some topologies but not others.

Two SH3 domains (Fyn and Spc) with only ~30% sequence identity but conserved TS.

Why is folding into "non-local" folds, e.g. β -barrels, more robust to sequence changes than folding into "local" folds, such as α -helical bundles?

Coarse-grained "CB model" for protein folding

[Bhattacherjee and Wallin, Biophys J 2012]

All-atom backbone/single-site sidechain representation.

Potential energy function based on effective hydrophobic forces and hydrogen bonding.

I. Sequence-based.

- 3 amino acid types: hydrophic/polar/turn.
- not "Go-type" or structure-based.

II. Model sequences fold into realistic protein folds

— both α -helix and β -sheet structure

L = 54

A domain of protein G

B domain of protein G

Fyn SH3 domain

Model proteins exhibit topology-dependent folding

Rank-order of cooperativity follows RCO trend at folding temperature Tf.

Extract transition state ensemble (TS) from peak barrier location.

Exploring the sequence effects on protein folding

1) Generate all possible hydrophobic/polar single/double-point mutants

≈400-1200 possible such mutant sequences per protein

2) Determine equilibrium behaviour of all mutants at $T = T_f$.

Simulate the joint probability distribution $P(s,r) \propto e^{-E(s,r)/k_{\rm B}T + h(s)}$

1. Conformational update
2. Sequence update
3. seq s
4. seq s
5. seq s

[Aina and Wallin, JCP 147 095102 (2017)]

Monitoring structure formation during folding

Two different variables describe structure formation:

 $q_{\rm I}$ = fraction of native contacts formed in motif I

 ϕ_i = fraction of native contacts formed for residue position i

Overall folding progress:

 N_{nat} = total number of native contacts formed

Formation of nonlocal contacts drive cooperativity in folding

... and underlie a greater ϕ -value diversity in all- β protein

Sequence effects on folding TS

Mutations induce shifts in equilibrium quantities, e.g., $\Delta \langle q_1 \rangle = \langle q_1 \rangle - \langle q_1 \rangle_0$

• q_1 and ϕ_i -values of β -barrel protein least perturbed by mutations

Can features of the "parent" protein explain the observed mutational response?

relevant observable X (q₁ or ϕ_i)

Can features of the "parent" protein explain the observed mutational response?

Observed mutational response on TS...

...can be explained by factors $\sigma_X \cos \alpha$ alone

Conclusion

Topology and sequence effects in protein folding are coupled:

I. Conformational diversity. TS of all- β proteins more structurally restricted than for all- α proteins, leading to weaker mutational response.

In particular, ϕ -values at positions with a broad distribution $P(\phi)$ should tend to diverge with sequence.

II. Mutational-energetic correlations. Conformational variations in TS of all- β proteins less "aligned" with energetic changes than in all- α , again weakening mutational response.