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Two-state protein folding

* Many globular proteins of ~50-120 amino acids

* Two structurally distinct states, U and N, separated by a single free
energy barrier (195)

* Minimal models for folding.
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Effects of topology and sequence on protein folding

Topology. Folding rates kf span ~6 orders
of magnitude

Higher number of “local” vs “nonlocal”
contacts means higher folding rate.

RCO = average sequence separation |i - ||
between contacts Ij In native structure,

Sequence. [Effects pronounced for
some topologies but not others.

ITwo SH3 domains (Fyn and Spc) with only
~30% sequence identity but conserved T5S.

Plaxco, et al. 1998
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Why is folding into “non-local” folds, e.g. B-barrels, more robust

to sequence changes than folding into “local” folds, such as -
helical bundles!



Coarse-grained “Cg model” for protein folding
[Bhattacherjee and Wallin, Biophys | 2012]

All-atom backbone/single-site sidechain representation.

Potential energy function based on effective
hydrophobic forces and hydrogen bonding.

l.  Sequence-based. H

— 3 amino acid types: hydrophic/polar/turn,
— not "Go-type” or structure-based.

ll. Model sequences fold into realistic protein folds

— both &-helix and B-sheet structure



B-barrel

PDB id: I1BDD

A domlain of 5 domain of Fyn SH3 domain
protein G protein G



Model proteins exhibit topology-dependent folding
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Extract transition state ensemble (TS) from peak barrier location.



Exploring the sequence effects on protein folding

|) Generate all possible hydrophobic/polar single/double-point mutants

~400-1200 possible such mutant sequences per protein
2) Determine equilibrium behaviour of all mutants at T = Tr.

Simulate the joint probability distribution  P(s,r) oc e~ Fl&m)/FaT+h(s)
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Monitoring structure formation during folding

B-barrel

Residue number
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Residue number

Two different variables describe structure formation:

g = fraction of native contacts formed in motif |
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¢i = fraction of native contacts formed for residue position |

Overall folding progress:

Nnat = total number of native contacts formed



Formation of nonlocal contacts drive cooperativity in folding
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... and underlie a greater ¢-value diversity in all-B protein
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Sequence effects on folding TS

Mutations induce shifts in equilibrium quantities, e.g., Algy = (g - {gno

A B

0.6 o T o 0.4 o
% 4B+O(—o— (7) 4B+O(—o—
8 0.4 1o\ B-barrel —— S 0.3} B-barrel —e—
S 04 ¢ =
> 0.2 | %
7 O 2 0.2 |
2 0.2 | 0 005 01 0.15 §
8 A(g)] = 0.1
S S
T ' S0 '

0O 005 0.1 0.15 0.2 0 0.05 0.1 0.15

* g and ¢i-values of B-barrel protein least perturbed by mutations



Can features of the “parent” protein explain the observed
mutational response?
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Can features of the “parent” protein explain the observed
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Conclusion

Topology and sequence effects in protein folding are coupled:

TS ensemble R Tendency for

Topology - properties sequence effects

|. Conformational diversity. TS of all-B proteins more structurally
restricted than for all-& proteins, leading to weaker mutational response.

In particular, ¢-values at positions with a broad distribution P(¢) should

tend to diverge with sequence.

ll. Mutational-energetic correlations. Conformational variations in TS
of all-B proteins less “aligned” with energetic changes than in all-&, again
weakening mutational response.



