Electron EDM Experiment using Francium at TRIUMF

Robert Collister

CAP Congress

June 3, 2019
Outline

• EDM searches
• Atomic fountain experiment
• Finer experimental details
Electric Dipole Moment Searches
EDM?

- Intrinsic separation of charge
- Violates P-symmetry

- Violates T-symmetry
 - Equivalent to CP-violation
CP violation in Standard Model

• CP violation observed in electroweak interaction
 • None in QCD, not large enough to explain baryon asymmetry

• In Standard Model: $d_e < 10^{-38}$ e cm $d_n < 10^{-32}$ e cm

• eEDM limits:
 - $d_e \leq 1.3 \times 10^{-28}$ e cm HfF+ 2017
 - $d_e \leq 1.3 \times 10^{-29}$ e cm ThO 2014
 - $d_e \leq 1.3 \times 10^{-27}$ e cm Ti-205 2002

• Experiments search for EDMs as any observation is new source of CP violation → new physics!
 • Results complementary to high energy colliders
eEDM in francium

- eEDM search in alkali atoms look for energy difference in valence electron aligned v. anti-aligned with applied E-field
 - Or as a phase difference between superposition of states

- Alkali atoms: simple atomic physics

- Relativistic enhancement: Rb: 25 Cs: 118.5 Fr: 903

- Apparatus first built using Cs at LBNL, to learn better control of systematics

- Relocation to TRIUMF for Fr: goal: $d_e \leq 8 \times 10^{-30} \text{ e cm}$
Atomic Fountain Experiment
Francium atomic fountain

- Two magneto-optical traps
 - Collection of Fr from beam
 - Launch MOT

- Launch atoms: measurement in freefall, free space

- Magnetic shielding, electric field plates

- Optical state preparation, analysis, and detection

- Proof-of-principle PRA 75, 063416 (2007)
Why a fountain?

• Atoms precess in E,B fields

• EDM signal: odd in reversal of E

• Motional magnetic field effect \((v \times E)\)
 • Odd in reversal of E, mimics EDM

• Fountain: Velocity reverses under gravity
 • Suppress motional systematic
 • Atoms slow: \(E\) quantization

• Systematics are the limiting error in EDM experiments
eEDM Experimental Details
Atom transport

- Launch by detuning vertical beams
 2.44 m \rightarrow 6.8 m/s

- Magnetic sextupoles BF/BD
 - Focus/defocus to counter expansion

- Shaped field plates
 - Counter strong-field seeking atoms

- ~75% return to be re-trapped
 - Great for limited Fr
Atom transport

BD/BF: magnetic sextupoles
D1/F2/D3: Shaped field plates
X/Y: Parallel/Perpendicular to field plates
Magnetic shielding

- Need magnetic shielding factor 10^7
 - 4 nested shells
- Lots of tricky aspects
- See poster
eEDM Research Collaboration

LBNL

Robert Collister, Ben Feinberg, Harvey Gould, Yan Li, Charles Munger Jr., Hiroshi Nishimura, Chris Timossi

TRIUMF

John Behr, Matthew Pearson

Missouri S&T

Ulrich Jentschura

… and you?
Bonus content
Proof-of-principle Cs fountain

- Demonstrated:
 - Launching Cs
 - State preparation and detection
 - E quantization
eEDM limits over time

60 years of measuring zero

Credit: Ben Sauer