

BERKELEY LAB

LAWRENCE BERKELEY NATIONAL LABORATORY

Electron EDM Experiment using Francium at TRIUMF

Robert Collister

CAP Congress
June 3, 2019

Outline

- EDM searches
- Atomic fountain experiment
- Finer experimental details

Electric Dipole Moment Searches

EDM?

- Intrinsic separation of charge
- Violates P-symmetry

- Violates T-symmetry
 - Equivalent to CP-violation

CP violation in Standard Model

- CP violation observed in electroweak interaction
 - None in QCD, not large enough to explain baryon asymmetry

• In Standard Model:
$$d_e < 10^{-38}$$
 e cm $d_n < 10^{-32}$ e cm

• eEDM limits:
$$d_e \le 1.3 \times 10^{-28} \text{ e cm}$$
 HfF+ 2017

$$d_e \le 1.3 \times 10^{-29} \text{ e cm}$$
 ThO 2014

$$d_e \le 1.3 \times 10^{-27} e cm$$
 TI-205 2002

- Experiments search for EDMs as any observation is new source of CP violation → new physics!
 - Results complementary to high energy colliders

eEDM in francium

- eEDM search in alkali atoms look for energy difference in valence electron aligned v. anti-aligned with applied E-field
 - Or as a phase difference between superposition of states
- Alkali atoms: simple atomic physics
- Relativistic enhancement: Rb: 25 Cs: 118.5 Fr: 903
- Apparatus first built using Cs at LBNL, to learn better control of systematics
- Relocation to TRIUMF for Fr: goal: d_e ≤ 8 x 10⁻³⁰ e cm

Atomic Fountain Experiment

Francium atomic fountain

- Two magneto-optical traps
 - Collection of Fr from beam
 - Launch MOT
- Launch atoms: measurement in freefall, free space
- Magnetic shielding, electric field plates
- Optical state preparation, analysis, and detection
- Proof-of-principle PRA 75, 063416 (2007)

Why a fountain?

- Atoms precess in E,B fields
- EDM signal: odd in reversal of E
- Motional magnetic field effect (v x E)
 - Odd in reversal of E, mimics EDM
- Fountain: Velocity reverses under gravity
 - Suppress motional systematic
 - Atoms slow: E quantization
- Systematics are the limiting error in EDM experiments

eEDM Experimental Details

Atom transport

- Launch by detuning vertical beams
 2.44 m ⇒ 6.8 m/s
- Magnetic sextupoles BF/BD
 - Focus/defocus to counter expansion
- Shaped field plates
 - Counter strong-field seeking atoms
- ~75% return to be re-trapped
 - Great for limited Fr

Atom transport

BD/BF: magnetic sextupoles D1/F2/D3: Shaped field plates

X/Y: Parallel/Perpendicular to field plates

Magnetic shielding

- Need magnetic shielding factor 10⁷
 - 4 nested shells
- Lots of tricky aspects
- See poster

eEDM Research Collaboration

LBNL

Robert Collister, Ben Feinberg, Harvey Gould, Yan Li, Charles Munger Jr., Hiroshi Nishimura, Chris Timossi

TRIUMF

John Behr, Matthew Pearson

Missouri S&T

... and you?

Ulrich Jentschura

Bonus content

Proof-of-principle Cs fountain

- Demonstrated:
 - Launching Cs
 - State preparation and detection
 - E quantization

eEDM limits over time

Imperial College London

60 years of measuring zero

Credit: Ben Sauer

