

The GlueX Experiment: A Search for Exotic Matter Dr. Zisis Papandreou

of **Regina**

CAP Congress 2019 June 5, 2019

Experimental Hall D

Outline

- Physics Motivation
- The Experiment
- Beam Asymmetry: η, η'
- Other Analyses

Physics Motivation

QCD predicts more types of states than just mesons & baryons

QCD predicts more types of states than just mesons & baryons

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. Phys.Let.8 (1964) 214

QCD predicts more types of states than just mesons & baryons

The New York Times Murray Gell-Mann, Who Peered at Particles and Saw the Universe, Dies at 89

Murray Gell-Mann obituary

QCD predicts more types of states than just mesons & baryons

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. Phys.Let.8 (1964) 214

QCD predicts more types of states than just mesons & baryons

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc. Phys.Let.8 (1964) 214

Can we observe explicit gluonic degrees of freedom in nature's bound states?

How do we look for gluonic degrees of freedom in spectroscopy?

Spectroscopy

How do we look for gluonic degrees of freedom in spectroscopy?

Nonets characterized by given JPC

symmetry groups

Spectroscopy

How do we look for gluonic degrees of freedom in spectroscopy?

Nonets characterized by given **J**^{PC}

Non-rel. quark model has allowed and non-allowed (exotic) QNs $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}$

Determine quantum numbers and pole parameters via Amplitude Analysis

Candidates

(older experiments)

State	Mass (GeV)	Width (GeV)
$\pi_1(1400)$	1.351 ± 0.03	0.313 ± 0.040
$\pi_1(1600)$	1.662 ± 0.015	0.234 ± 0.050
$\pi_1(2015)$	2.01 ± 0.03	0.28 ± 0.05
State	Production	Decays
$\pi_1(1400)$	$\pi^- p, ar p n$	$\pi^-\eta^\ddagger, \pi^0\eta^\ddagger$
$\pi_1(1600)$	$\pi^- p,\! ar p p$	$\eta^{\prime}\pi,\!b_{1}\pi,\!f_{1}\pi,\! ho\pi^{\ddagger}$
$\pi_1(2015)$	$\pi^- p$	$b_1\pi,f_1\pi$
State	Experiments	
$\pi_1(1400)$	E852, CBAR	
$\pi_1(1600)$	E852, VES, C	OMPASS, CBAR
$\pi_1(2015)$	E852	

•Low statistics, acceptance leakage, no. of wave sets, interpretation of line shapes and phases, controversial decay channels...

Candidates

(older experiments)

State	Mass (GeV)		Width (GeV)
$\pi_1(1400)$	1.351 ± 0.03		0.313 ± 0.040
$\pi_1(1600)$	1.662 ± 0.015		0.234 ± 0.050
$\pi_1(2015)$	2.01 ± 0.03		0.28 ± 3.05
State	Pro	duction	Decays
$\pi_1(1400)$	Г	$\pi^- p, ar p n$	$\pi^-\eta^\ddagger, \pi^0\eta^\ddagger$
$\pi_1(1600)$	L	$\pi^- p, \bar{p}p$	$\eta'\pi, b_1\pi, f_1\pi, ho\pi^{\ddagger}$
$\pi_1(2015)$		$\pi^- p$	$b_1\pi,f_1\pi$
State	Exper	iments	
$\pi_1(1400)$	E852,	CBAR	
$\pi_1(1600)$	E852,	VES, CO	OMPASS, CBAR
$\pi_1(2015)$	E852		

•Low statistics, acceptance leakage, no. of wave sets, interpretation of line shapes and phases, controversial decay channels...

Most searches have focused on the π_1 state

Candidates

(older experiments)

State	Mass (GeV)		Width (GeV)	
$\pi_1(1400)$	1.351 ± 0.03		0.313 ± 0	0.040
$\pi_1(1600)$	1.662	2 ± 0.015	0.234 ± 0	0.050
$\pi_1(2015)$	2.01 ± 0.03		$0.28\pm$	5.05
State Production		De	ecays	
$\pi_1(1400)$	1	$\pi^- p, ar p n$	$\pi^{-}\eta^{\ddagger}$,	$\pi^0\eta^{\ddagger}$
$\pi_1(1600)$		$\pi^- p, \! ar p p$	$\eta'\pi, b_1\pi, f_1\tau$	$\tau, \rho \pi^{\ddagger}$
$\tau_1(2015)$		$\pi^- p$	$b_1 \tau$	$r, f_1\pi$
State	Experiments			
$\pi_1(1400)$ E852, CBAR				
$\pi_1(1600)$	(1600) E852, VES, COMPASS, CBAR			
$\pi_1(2015)$	E852			

•Low statistics, acceptance leakage, no. of wave sets, interpretation of line shapes and phases, controversial decay channels...

Most searches have focused on the π_1 state

Past: Two different candidates $\pi_1(1400)/\pi_1(1600)$ that couple separately to $\eta\pi$ and $\eta'\pi$. Not compatible with LQCD estimates for hybrid states, nor with most phenomenological models.

single exotic $\pi 1$ (1564) resonant pole which couples to both $\eta/\eta'\pi$ channels

Production of Hybrid Mesons

• Combine the QN

$$J^{PC} = 1^{+-}, 1^{-+}$$

- of the excited gluonic field with those of the quarks
- Allows access to conventional and exotic mesons

Production of Hybrid Mesons

• Combine the QN

$$J^{PC} = 1^{+-}, 1^{-+}$$

- of the excited gluonic field with those of the quarks
- Allows access to conventional and exotic mesons

Production of Hybrid Mesons

• Combine the QN

$$J^{PC} = 1^{+-}, 1^{-+}$$

- of the excited gluonic field with those of the quarks
- Allows access to conventional and exotic mesons

Photoproduction: Exotics

 Can couple to all states in the lightest hybrid multiplet through t-channel exchange and photoproduction (via Vector Meson Dominance)

Photoproduction: Non-exotics

• Photon beam polarization filters the "naturality" of the exchange particle

Photoproduction: Non-exotics

• Photon beam polarization filters the "naturality" of the exchange particle

Worldwide Spectroscopy

Worldwide Spectroscopy

hadron probes electromagnetic probes BESI ABAR LH BELLE Belle II completed/analysis ongoing/future ongoing/future completed/analysis GLUE ~~~~ p a n)d a

colliding beam

fixed target

13

Worldwide Spectroscopy

hadron probes

fixed target

The GlueX Experiment

120 scientists, 27 Institutions

GlueX Collaboration

Jefferson Lab

The Experiment

forward calorimeter

time-of

-flight

barrel

calorimeter

target

- Linearly polarized bremsstrahlung photon beam from CEBAF 12 GeV e
- * High statistics samples of multiparticle final states provided by large acceptance detector for both charged and neutral particles
- * Resolutions:

The Diamonds

50 µm diamond radiators
Bragg/Laue: "rock that curve"
At BMIT beam line

The Beam Line

between $E_{\gamma} = 8.4$ and 9 GeV

Photon Beam Energy (GeV)

The Beam Line

The Beam Line

arXiv:1703.07875

7.5

8

8.5

9.5

9

10.5

Photon Beam Energy (GeV)

11

11.5

10

The Detector

The Calorimeters

30-cm target

The Barrel Calorimeter

- 48 azimuthal sections (modules)
- Reconstructs γ showers from π^0 and η decays
- Provides timing information (neutrals/charged)
- With the CDC it provides charged particle PID

- Sampling calorimeter (9.5% sampling fraction)
- 750,000 double-clad scintillating fibers
- BCAL: 28 tonnes

T.D. Beattie et al., NIM A 896 (2018) 24–42

SiPM Readout Assemblies

Assembly

a = :: :: :: : : : : : : : : : : : : : :
-

Electronics

mming	heme

24

Tegan Beattie (Regina), Will McGinley (CMU)

Motivation: $\gamma p \rightarrow p\eta$

- First steps toward mapping exotics: study observables of likely decay particles
 - *πη* and *πη'* resonances high on list of possibly-accessible exotics/hybrids
 - > Σ for η measured by GlueX at E_{γ} = 9 GeV
 - > Σ for η' not yet measured at $E_{\gamma} = 9$ GeV
 - Σ sensitive to four-momentum transfer squared (Mandelstam t)
 - $t = (P_{target} P_{recoil})^2$

Measure
$$\Sigma$$
 asymmetry of η' and η as functions of t $\eta \rightarrow \pi^+ \pi^- \pi^0$ $\eta \rightarrow 3\pi^0$ $\eta \rightarrow 2\gamma$ $\eta' \rightarrow \pi^+ \pi^- \eta$ $\pi^0 \rightarrow 2\gamma$ $\pi^0 \rightarrow 2\gamma$ $\eta \rightarrow 2\gamma$ (BR $\approx 22.9 \%)$ (BR $\approx 32.7 \%)$ (BR $\approx 39.4 \%)$ (BR $\approx 42.9 \% * 39.4 \%)$

 \succ Re-measuring Σ for η lends confidence to the new η' measurements

Event Filtering / Accidentals

- > Select combinations of particles which match our topology (e.g., $\pi^{\dagger}\pi^{-}\eta$)
 - > 2 pos. tracks (p, π^+), 1 neg. track (π^-), 2 neutral showers ($\eta \rightarrow 2\gamma$)
- Loose dE/dx cut for Proton/Pion separation
- > Missing mass cut to select exclusive η or η' production
 - ≻ Ensure invariant mass of beam + target ≈ invariant mass of candidate particle
- Kinematic fit constrains 2γ mass and tests for conservation of E and P
 - 'Pulls' particle positions and momenta to fit hypothesis
 - > Outputs 'Confidence Level' (CL), a measure of goodness-of-fit
- Vertex cuts remove candidates with decay vertices outside target volume

Event Filtering / Accidentals

- > Select combinations of particles which match our topology (e.g., $\pi^{\dagger}\pi^{-}\eta$)
 - > 2 pos. tracks (p, π^+), 1 neg. track (π^-), 2 neutral showers ($\eta \rightarrow 2\gamma$)
- Loose dE/dx cut for Proton/Pion separation
- > Missing mass cut to select exclusive η or η' production
 - ≻ Ensure invariant mass of beam + target ≈ invariant mass of candidate particle
- Kinematic fit constrains 2γ mass and tests for conservation of E and P
 - 'Pulls' particle positions and momenta to fit hypothesis
 - > Outputs 'Confidence Level' (CL), a measure of goodness-of-fit
- Vertex cuts remove candidates with decay vertices outside target volume

Invariant Masses

η,η' Beam Asymmetries

- Defined such that:
 - Natural parity exchange contributes positively
 - > Exchange of vector, ρ and ω (J^P = 1⁻)
 - > Unnatural parity exchange contributes negatively
 - Exchange of pseudovector, b and h (J^P = 1⁺)

η,η' Asymmetry Method

GlueX: Beam Asymmetries n,n'

Theory: Beam Asymmetry Ratio

- > η' beam-target exchanges dominated by ρ , ω , b, and h mesons
- Assuming no contribution from hidden strangeness exchange of φ and h' mesons implies that the Σ asymmetry of the η' and η will be equal
- > JPAC predictions for two model assumptions for $\Sigma_{n'}/\Sigma_n$ allowing ϕ exchange:

Significant deviation from 1 may imply non-negligible \u03c6/h' contributions or more complicated interactions between the proton and produced meson

GlueX: Beam Asymmetry Ratio

• Statistical errors only (limited by η' statistical errors)

No statistically-significant deviations from unity are observed

- GLUEX Results (2 citations)
- threshold (11.8-8.2 GeV) production is clean; schannel photoproduction probes 5-quark interaction!
- probes gluon distributions in the proton and trace anomaly term [Kharzeev et al., NPA 661, 568 (1999)]

- GLUEX Results (2 citations)
- threshold (11.8-8.2 GeV) production is clean; schannel photoproduction probes 5-quark interaction!
- probes gluon distributions in the proton and trace anomaly term [Kharzeev et al., NPA 661, 568 (1999)]

- GLUEX Results (2 citations)
- threshold (11.8-8.2 GeV) production is clean; schannel photoproduction probes 5-quark interaction!
- probes gluon distributions in the proton and trace anomaly term [Kharzeev et al., NPA 661, 568 (1999)]
- Don't see LHCb pentas!

GlueX talks at MENU 2019

Dlanami	Searching for Exotic Hadrons at GlueX	Sean Dobbs 🥝
Plenary	McConomy Auditorium, CMU Cohen University Center	09:15 - 09:45
	Exclusive eta and eta' photoproduction and beam asymmetries at GlueX	William McGinley
	Rangos 1	15:00 - 15:30
	Beam Asymmetries from Light Scalar Meson Photoproduction on the Proton at GlueX	Dr Stuart Fegan
	Rangos 1	17:00 - 17:30
Hadron Spectroscopy	Measurement of the Photon Beam Asymmetry \$\Sigma\$ for \$\gamma + p\to K^+\Sigma^0\$ at \$E_{\gamma}\$ = 8.5 GeV in GlueX	Mr Nilanga Wickramaarachchi
	Rangos 2	17:30 - 18:00
	Photoproduction of \$\Xi\$ Baryons at GlueX	Ashley Ernst
	Rangos 2	09:45 - 10:15
	Spin-Density Matrix Elements for Vector Meson Photoproduction at GlueX	Alexander Austregesilo 🥝
	Rangos 2	14:30 - 15:00
Meson-	Photoproduction of Baryon-anti-Baryon Pairs at GlueX.	Hao Li
Nucleon	Rangos 1	09:15 - 09:45
Future	Physics with the GlueX DIRC	Justin Stevens
Facilities	Rangos 3	13:30 - 14:00

Summary & Outlook

- Gluonic-field excitation leads to a complete spectrum of mesons.
- LQCD predicts hybrid multiplets; GlueX will map them out.
- ✓Reaction channels: γp→(ρ,ω,φ)p, γp→(π⁰,η,η')p, etc.
- $\checkmark Early physics analyses: beam asymmetries of <math display="inline">\eta,\,\eta'$ mesons
- Next: other asymmetries, **SDMEs**, cross sections, **PWA**
- <u>Future</u>:
 - Primakoff program for η decay width and π^{\pm} polarizability
 - DIRC Detector upgrade for improved K/ π separation fall 2019

Acknowledgements

LEARN MORE

- portal.gluex.org
- www.halld.org
- www.gluex.org

Acknowledgements

LEARN MORE

- portal.gluex.org
- www.halld.org
- www.gluex.org

Thank you!

Backup Slides

Old Data: γp→pŋ,pŋ'

π^0 and η Beam Asymmetries

Future GlueX with Strangeness

Strangeness program	3000	exotics	DIRC (fall 2019)
$J^{PC} $	2500 2000 MeV 1500	$0^{+-} 2^{+-}$ 1^{-+} J^{PC} $u\bar{u} + d\bar{d}$ $s\bar{s}$	forward calorimeter barrel time-of flight target photon beam photon beam forward drift chambers superconducting magnet

- Mapping the hybrid spectrum requires: large statistics samples of many particle final states in strange and nonstrange decay modes
- Experimentally access to strangeness content of the state by comparing strange vs non-strange decay modes

Primakoff program

- * η → γγ decay width through Primakoff production
- Test discrepancy between measurements at e⁻e⁻ colliders and previous Primakoff results

- Extract charge pion polarizability from
 Primakoff production of pion pairs
- * Comparison to other processes, eg. COMPASS's recent $\pi^-\gamma \to \pi^-\gamma$ and further test χ PT predictions

