Investigation of High-Lying (α, γ) Resonances in ²²Ne via High-Resolution Gamma Ray Spectroscopy in Inverse Kinematics

Beau Greaves CAP Congress 2019 SFU

Stellar Nucleosynthesis of ²²Ne

²²Ne produced in AGB stars from ${}^{18}O(\alpha, \gamma)$ out of CNO cycle

 $^{18}\text{O}(\alpha,\gamma)^{22}\text{Ne}$ competes with production of $^{19}\text{F},$ the abundance of which is poorly characterized in AGB stars

1

Reaction rates for the s-process neutron source $^{22}Ne+\alpha$

²²Ne produced in AGB stars from ${}^{18}O(\alpha, \gamma)$ out of CNO cycle

Following $^{22}Ne(\alpha,n)^{25}Mg$ is main neutron source for heavy element s-process

Recent rate adjustments show drastic impact on abundances

- ²²Ne(α,γ)²⁶Mg
- ²²Ne(α,n)²⁵Mg

Spectroscopy of ²²Ne resonances at ISAC-II

<i>E</i> , (MeV)	E_x (MeV)	$J^{\pi a}$	$\omega\gamma_{(\alpha,\gamma)}$ (μeV) ^b	$\omega\gamma_{(\alpha, n)} (\mu eV)^{b}$					
$^{18}O + \alpha$									
0.058	9.72	3-	4.1×10^{-40}						
		(2+)	1.5×10^{-39}						
0.218	9.85	2+	7.1×10^{-12}						
		(1-)	5.8×10^{-11}						
0.470	10.05	`0+´	0.55						
		(1-)	0.23						
0.566	10.13	`4+´	7.9×10^{-3}						
		(2^{+})	1.95						
		(3)	0.15						
0.662	10.21	`1 ⁻ ´	$230 \pm 25^{\circ}$						

Spectroscopy of ²²Ne resonances at ISAC-II

ISAC-II at TRIUMF

TIGRESS

Experimental Setup

- Experiment S1855 ²¹Ne(d,p)²²Ne
 - Beam energy: 165 MeV (7.89 MeV/u)
- Thin Target
 - 120 μg/cm² self-supporting CD₂

• SHARC

- Reduced noise to allow for measurement of high-lying excitation energies
- Able to gate on excitation energies

TIGRESS

Eight 90° detectors and four 135° detectors

Analysis Status

- 20 states observed so far
- 28 corresponding γ rays have been found
 - 4 new, 3 of which correspond to resonances
- Angular distributions for key γ rays found, but detector efficiencies require refinement

Ei	Si	Ef	Sf	Eg
1.274	2+	0	0+	1.274
3.357	4+	1.274	2+	2.083
4.456	2+	1.274	2+	3.182
5.329	1+	0	0+	5.329
5.363	2+	1.274	2+	4.089
5.523	(4)+	3.357	4+	2.166
5.641	2+	1.274	2+	4.367
6.345	4+	3.357	4+	2.988
6.345	4+	5.523	(4)+	0.822
6.636	(3,4)+	1.274	2+	5.362
6.636	(3,4)+	3.357	4+	3.279
6.819	2+	1.274	2+	5.545
6.819	2+	4.456	2+	2.363
6.819	2+	5.363	2+	1.456
6.854	(1+)	0	0+	6.854
6.853	(1)+	1.274	2+	5.579
7.341	(4)+	3.357	4+	3.984
7.405	(3)-	1.274	2+	6.131
7.489	1-	0	0+	7.489
7.921	(2)+	1.274	2+	6.647
9.178	1+	0	0+	9.178
9.841	(2+,1-)	5.363	2+	4.478
9.841	(2+,1-)	1.274	2+	8.567
10.137	2+	1.274	2+	8.863
10.208	1-	0	0+	10.208
10.294	2+	1.274	2+	9.02
10.294	2+	4.456	2+	5.838
10.294	0+1-2+	5.329	0+	4,965

Analysis Status

- 20 states observed so far
- 28 corresponding γ rays have been found
 - 4 new, 3 of which correspond to resonances
- Angular distributions for key γ rays found, but detector efficiencies require refinement

Ei	Si	Ef	Sf	Eg
1.274	2+	0	0+	1.274
3.357	4+	1.274	2+	2.083
4.456	2+	1.274	2+	3.182
5.329	1+	0	0+	5.329
5.363	2+	1.274	2+	4.089
5.523	(4)+	3.357	4+	2.166
5.641	2+	1.274	2+	4.367
6.345	4+	3.357	4+	2.988
6.345	4+	5.523	(4)+	0.822
6.636	(3,4)+	1.274	2+	5.362
6.636	(3,4)+	3.357	4+	3.279
6.819	2+	1.274	2+	5.545
6.819	2+	4.456	2+	2.363
6.819	2+	5.363	2+	1.456
6.854	(1+)	0	0+	6.854
6.853	(1)+	1.274	2+	5.579
7.341	(4)+	3.357	4+	3.984
7.405	(3)-	1.274	2+	6.131
7.489	1-	0	0+	7.489
7.921	(2)+	1.274	2+	6.647
9.178	1+	0	0+	9.178
9.841	(2+,1-)	5.363	2+	4.478
9.841	(2+,1-)	1.274	2+	8.567
10.137	2+	1.274	2+	8.863
10.208	1-	0	0+	10.208
10.294	2+	1.274	2+	9.02
10.294	2+	4.456	2+	5.838
10.294	0+1-2+	5.329	0+	4,965

Spin Investigation of 9.85 MeV Resonance

Spin Investigation of 9.85 MeV Resonance

Spin Investigation of 9.85 MeV Resonance

- 9.85 MeV resonance decays to 2^+_1 and 2^+_3
 - Neutron transfer preferentially populates low J, positive parity states
 - Of states determined so far, eight are 2⁺, compared to two 1⁻
 - 2⁺ decay primarily via M1 to 2⁺
 - 1⁻ decay primarily via E1 to 0⁺

Propose 9.85 MeV as 2⁺, but currently investigating further

Next Steps

- Determining origin of unclassified states with $\gamma \gamma$ coincidence
- Investigate particle angular distributions for spin confirmation on 9.85 MeV and several other unconfirmed spin levels via DWBA simulations
- Refine segment efficiencies to for gamma angular distributions

Acknowledgements

- **University of Guelph** –D. Mücher, L. Atar, V. Bildstein, E. Kasanda, T. Rockman, C. Svensson
- TRIUMF –S. Gillespie, G. Hackman, A. Babu, F. Barrett, N. Bernier, S. Bhattacharjee, R. Caballero-Folch, A. Chester, A. Murphy B. Olaizola, Y. Saito, R. Umashankar
- LPC-Caen N. A. Orr
- NSCL A. Spyrou
- Surrey W. N. Catford, P. Siuryte
- University of Toronto T. Drake

Thank you for listening!

Breit-Wigner Expression

$$\langle \boldsymbol{\sigma} \boldsymbol{\nu} \rangle = \left(\frac{2\pi}{\mu k_B T}\right)^{\frac{3}{2}} \hbar^2 \sum_i \omega \gamma_i e^{\frac{-\boldsymbol{E}_i}{kT}}$$
$$\omega \gamma_i = \frac{2\boldsymbol{J}_i + 1}{(2\boldsymbol{J}_p + 1)(2\boldsymbol{J}_x + 1)} \frac{\boldsymbol{\Gamma}_{\alpha} \boldsymbol{\Gamma}_{\gamma}}{\boldsymbol{\Gamma}_{\alpha} + \boldsymbol{\Gamma}_{\gamma}}$$
$$= g(1 - B_{\alpha}) B_{\alpha} \frac{\hbar}{\tau}$$

 $\begin{array}{l} \langle \pmb{\sigma} \pmb{\nu} \rangle \ \text{- reaction rate} \\ \mathbf{E}_{\mathrm{i}} \ \text{- resonance energy} \\ \mathbf{J}_{\mathrm{i/p/x}} \ \text{- spins of resonance state/projectile/target} \\ \mathbf{\Gamma}_{\alpha/\gamma} \ \text{- Partial width of } \alpha/\gamma \ \text{decay} \\ \boldsymbol{\tau} \ \text{- lifetime} \end{array}$

Iliadis 2007 Nuclear Physics of Stars

Intro: indirect approaches to nucleosynthesis studies

Intro: indirect approaches to nucleosynthesis studies

Example of particle angular distribution

Particle-gamma spectroscopy with TIGRESS

²¹Ne(d,p), 7.9 MeV/u August 2017

