Investigation of High-Lying (α, γ) Resonances in 22Ne via High-Resolution Gamma Ray Spectroscopy in Inverse Kinematics

Beau Greaves
CAP Congress 2019
SFU
Stellar Nucleosynthesis of ^{22}Ne

^{22}Ne produced in AGB stars from $^{18}\text{O}(\alpha, \gamma)$ out of CNO cycle

$^{18}\text{O}(\alpha, \gamma)^{22}\text{Ne}$ competes with production of ^{19}F, the abundance of which is poorly characterized in AGB stars
22Ne produced in AGB stars from $^{18}\text{O}(\alpha,\gamma)$ out of CNO cycle

Following $^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$ is main neutron source for heavy element s-process

Recent rate adjustments show drastic impact on abundances
- $^{22}\text{Ne}(\alpha,\gamma)^{26}\text{Mg}$
- $^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$
Spectroscopy of ^{22}Ne resonances at ISAC-II

<table>
<thead>
<tr>
<th>E_r (MeV)</th>
<th>E_x (MeV)</th>
<th>J^π</th>
<th>$\omega\gamma_{(a,\gamma)}$ (µeV)</th>
<th>$\omega\gamma_{(a,n)}$ (µeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{18}\text{O} + \alpha$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.058.....</td>
<td>9.72</td>
<td>3^-</td>
<td>4.1×10^{-40}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2^+)</td>
<td>1.5×10^{-39}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2^+</td>
<td>7.1×10^{-12}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1^-)</td>
<td>5.8×10^{-11}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0^+</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1^-)</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>0.566.....</td>
<td>10.13</td>
<td>4^+</td>
<td>7.9×10^{-3}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2^+)</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3^-)</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>0.662.....</td>
<td>10.21</td>
<td>1^-</td>
<td>$230 \pm 25^\circ$</td>
<td></td>
</tr>
</tbody>
</table>

Diagram: $^{18}\text{O} (\alpha,\gamma)^{22}\text{Ne}$ cross-sections at various E_R values, with data from Käppeler et al. 1994.
Spectroscopy of ^{22}Ne resonances at ISAC-II

<table>
<thead>
<tr>
<th>E_r (MeV)</th>
<th>E_x (MeV)</th>
<th>J^a</th>
<th>ω_γ (eV)</th>
<th>ω_γ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$^{18}\text{O} + \alpha$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.058</td>
<td>9.72</td>
<td>3^-</td>
<td>4.1×10^{-40}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2^+)</td>
<td>1.5×10^{-39}</td>
<td></td>
</tr>
<tr>
<td>0.218</td>
<td>9.85</td>
<td>2^+</td>
<td>7.1×10^{-12}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1^-)</td>
<td>5.8×10^{-11}</td>
<td></td>
</tr>
<tr>
<td>0.470</td>
<td>10.05</td>
<td>0^+</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1^-)</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>0.566</td>
<td>10.13</td>
<td>4^+</td>
<td>7.9×10^{-3}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2^+)</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>0.662</td>
<td>10.21</td>
<td>1^-</td>
<td>230 ± 25</td>
<td></td>
</tr>
</tbody>
</table>

indirect: TUDA, TACTIC, TIGRESS, IRIS, EMMA

direct: DRAGON

Käppeler et al. 1994
ISAC-II at TRIUMF
Experimental Setup

- **Experiment S1855 – $^{21}\text{Ne}(d,p)^{22}\text{Ne}$**
 - Beam energy: 165 MeV (7.89 MeV/u)

- **Thin Target**
 - 120 μg/cm2 self-supporting CD$_2$

- **SHARC**
 - Reduced noise to allow for measurement of high-lying excitation energies
 - Able to gate on excitation energies

- **TIGRESS**
 - Eight 90° detectors and four 135° detectors
Experiments in Inverse Kinematics

$^{21}\text{Ne} (E_x=0)$

$^{22}\text{Ne} (E_x=?)$

CD$_2$

silicon strip detector

Proton energy (MeV)

Proton angle (θ)
Experiments in Inverse Kinematics

$^{21}\text{Ne} \ (E_x=0)$

$^{22}\text{Ne} \ (E_x=?)$

silicon strip detector

Proton energy (MeV)

Proton angle (θ)

Ground State
First Excited State
Second Excited State
Experiments in Inverse Kinematics

Proton energy (MeV)

Proton angle (θ)

$^{21}\text{Ne} (E_x=0)$

$^{22}\text{Ne} (E_x=?)$

CD$_2$

silicon strip detector

Ground State

First Excited State

Second Excited State

\propto
Experiments in Inverse Kinematics

$^{21}\text{Ne} \ (E_x=0)$

$^{22}\text{Ne} \ (E_x=?)$
Experiments in Inverse Kinematics

$^{21}\text{Ne} \ (E_x=0)$

CD$_2$

$^{22}\text{Ne} \ (E_x=?)$

Proton energy (MeV)

Proton angle (θ)

Ground State

First Excited State

Second Excited State
Experiments in Inverse Kinematics

$^{21}\text{Ne} \quad (E_x = 0)$

$^{22}\text{Ne} \quad (E_x = ?)$

Proton energy (MeV)

Proton angle (θ)

CD$_2$
Experiments in Inverse Kinematics

$^21\text{Ne} \ (E_x = 0)$

CD_2

$^22\text{Ne} \ (E_x = ?)$

Proton angle (θ)

Excitation energy (MeV)

22 Ne (E_x = ?)
Spectroscopy of 22Ne resonances at ISAC-II
Analysis Status

- 20 states observed so far
- 28 corresponding γ rays have been found
 - 4 new, 3 of which correspond to resonances
- Angular distributions for key γ rays found, but detector efficiencies require refinement

<table>
<thead>
<tr>
<th>Ei</th>
<th>Si</th>
<th>Ef</th>
<th>Sf</th>
<th>Eg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.274</td>
<td>2+</td>
<td>0+</td>
<td>1.274 2+</td>
<td>1.274</td>
</tr>
<tr>
<td>3.357</td>
<td>4+</td>
<td>1.274 2+</td>
<td>2.083</td>
<td></td>
</tr>
<tr>
<td>4.456</td>
<td>2+</td>
<td>1.274 2+</td>
<td>3.182</td>
<td></td>
</tr>
<tr>
<td>5.329</td>
<td>1+</td>
<td>0 0+</td>
<td>5.329</td>
<td></td>
</tr>
<tr>
<td>5.363</td>
<td>2+</td>
<td>1.274 2+</td>
<td>4.089</td>
<td></td>
</tr>
<tr>
<td>5.523</td>
<td>(4)+</td>
<td>3.357 4+</td>
<td>2.166</td>
<td></td>
</tr>
<tr>
<td>5.641</td>
<td>2+</td>
<td>1.274 2+</td>
<td>4.367</td>
<td></td>
</tr>
<tr>
<td>6.345</td>
<td>4+</td>
<td>3.357 4+</td>
<td>2.988</td>
<td></td>
</tr>
<tr>
<td>6.345</td>
<td>4+</td>
<td>5.523 (4)+</td>
<td>0.822</td>
<td></td>
</tr>
<tr>
<td>6.636</td>
<td>(3,4)+</td>
<td>1.274 2+</td>
<td>5.362</td>
<td></td>
</tr>
<tr>
<td>6.636</td>
<td>(3,4)+</td>
<td>3.357 4+</td>
<td>3.279</td>
<td></td>
</tr>
<tr>
<td>6.819</td>
<td>2+</td>
<td>1.274 2+</td>
<td>5.545</td>
<td></td>
</tr>
<tr>
<td>6.819</td>
<td>2+</td>
<td>4.456 2+</td>
<td>2.363</td>
<td></td>
</tr>
<tr>
<td>6.819</td>
<td>2+</td>
<td>5.363 2+</td>
<td>1.456</td>
<td></td>
</tr>
<tr>
<td>6.854</td>
<td>(1+)</td>
<td>0 0+</td>
<td>6.854</td>
<td></td>
</tr>
<tr>
<td>6.853</td>
<td>(1+)</td>
<td>1.274 2+</td>
<td>5.579</td>
<td></td>
</tr>
<tr>
<td>7.341</td>
<td>(4)+</td>
<td>3.357 4+</td>
<td>3.984</td>
<td></td>
</tr>
<tr>
<td>7.405</td>
<td>(3)-</td>
<td>1.274 2+</td>
<td>6.131</td>
<td></td>
</tr>
<tr>
<td>7.489</td>
<td>1-</td>
<td>0 0+</td>
<td>7.489</td>
<td></td>
</tr>
<tr>
<td>7.921</td>
<td>(2)+</td>
<td>1.274 2+</td>
<td>6.647</td>
<td></td>
</tr>
<tr>
<td>9.178</td>
<td>1+</td>
<td>0 0+</td>
<td>9.178</td>
<td></td>
</tr>
<tr>
<td>9.841</td>
<td>(2+,1-)</td>
<td>5.363 2+</td>
<td>4.478</td>
<td></td>
</tr>
<tr>
<td>9.841</td>
<td>(2+,1-)</td>
<td>1.274 2+</td>
<td>8.567</td>
<td></td>
</tr>
<tr>
<td>10.137</td>
<td>2+</td>
<td>1.274 2+</td>
<td>8.863</td>
<td></td>
</tr>
<tr>
<td>10.208</td>
<td>1-</td>
<td>0 0+</td>
<td>10.208</td>
<td></td>
</tr>
<tr>
<td>10.294</td>
<td>2+</td>
<td>1.274 2+</td>
<td>9.02</td>
<td></td>
</tr>
<tr>
<td>10.294</td>
<td>2+</td>
<td>4.456 2+</td>
<td>5.838</td>
<td></td>
</tr>
<tr>
<td>10.294</td>
<td>0+1-2+</td>
<td>5.329 0+</td>
<td>4.965</td>
<td></td>
</tr>
</tbody>
</table>
Analysis Status

• 20 states observed so far
• 28 corresponding γ rays have been found
 • 4 new, 3 of which correspond to resonances
• Angular distributions for key γ rays found, but detector efficiencies require refinement
Spin Investigation of 9.85 MeV Resonance

- 10.294 MeV (2⁺, 1⁺, 0⁺)
- 10.205 MeV (1⁺)
- 10.137 MeV (2⁺)
- 9.841 MeV (2⁺, 1⁺)
- 5.636 MeV (2⁺)
- 5.629 MeV (0⁺)
- 4.456 MeV (2⁺)
- 1.274 MeV (2⁺)
- 0 MeV (0⁺)
Spin Investigation of 9.85 MeV Resonance

10.294 MeV (2\(^+\),1\(^+\),0\(^+\))

10.205 MeV 1\(^+\)
10.137 MeV 2\(^+\)
9.841 MeV (2\(^+\),1\(^-\))

9.02 MeV M1
5.84 MeV M1
4.96 MeV ?
10.21 MeV E1
8.86 MeV M1
8.57 MeV ?
4.48 MeV ?

5.636 MeV 2\(^+\)
5.629 MeV 0\(^+\)
4.456 MeV 2\(^+\)
1.274 MeV 2\(^+\)
0 MeV 0\(^+\)
Spin Investigation of 9.85 MeV Resonance

- 9.85 MeV resonance decays to 2_1^+ and 2_3^+
 - Neutron transfer preferentially populates low J, positive parity states
 - Of states determined so far, eight are 2^+, compared to two 1^-
 - 2^+ decay primarily via M1 to 2^+
 - 1^- decay primarily via E1 to 0^+

Propose 9.85 MeV as 2^+, but currently investigating further

Käppeler et al. 1994
Next Steps

• Determining origin of unclassified states with $\gamma - \gamma$ coincidence

• Investigate particle angular distributions for spin confirmation on 9.85 MeV and several other unconfirmed spin levels via DWBA simulations

• Refine segment efficiencies to for gamma angular distributions
Acknowledgements

- **TRIUMF** – S. Gillespie, G. Hackman, A. Babu, F. Barrett, N. Bernier, S. Bhattacharjee, R. Caballero-Folch, A. Chester, A. Murphy B. Olaizola, Y. Saito, R. Umashankar

- **NSCL** – A. Spyrou
- **Surrey** – W. N. Catford, P. Siuryte
- **University of Toronto** – T. Drake

Thank you for listening!
Breit-Wigner Expression

\[
\langle \sigma \nu \rangle = \left(\frac{2\pi}{\mu k_B T} \right)^{\frac{3}{2}} \hbar^2 \sum_i \omega \gamma_i e^{-\frac{E_i}{kT}}
\]

\[
\omega \gamma_i = \frac{2J_i + 1}{(2J_p + 1)(2J_x + 1)} \frac{\Gamma_\alpha \Gamma_\gamma}{\Gamma_\alpha + \Gamma_\gamma}
\]

\[
= g(1 - B_\alpha)B_\alpha \frac{\hbar}{\tau}
\]

\[
\langle \sigma \nu \rangle - \text{reaction rate}
\]

\[
E_i - \text{resonance energy}
\]

\[
J_{i/p/x} - \text{spins of resonance state/projectile/target}
\]

\[
\Gamma_\alpha/\gamma - \text{Partial width of } \alpha/\gamma \text{ decay}
\]

\[
\tau - \text{lifetime}
\]
Experiments in Inverse Kinematics

$^{21}\text{Ne} \ (E_x=0)$

$^{22}\text{Ne} \ (E_x=?)$

silicon strip detector

^{130}Sn beam

^{132}Sn beam

Proton

CD$_2$

Counts

$Q \ (\text{MeV})$

$2,005 \text{ keV}$

$1,561 \text{ keV}$

$1,393 \text{ keV}$

854 keV

0 keV
Intro: indirect approaches to nucleosynthesis studies
Intro: indirect approaches to nucleosynthesis studies
Example of particle angular distribution
Particle-gamma spectroscopy with TIGRESS

$^{21}\text{Ne}(d,p), \text{7.9 MeV/u}$

August 2017