

Status of the SNO+ experiment

Aleksandra Bialek, SNOLAB on behalf of the SNO+ collaboration

Canadian Association of Physicists Congress June 3, 2019 Simon Fraser University, Burnaby

SNO+@SNOLAB

SNOLAB – underground laboratory:

- Creighton Mine, Sudbury, Canada
- Deep: 2km, 6000 mwe
 - ~ 70 muons /day in SNO+
- Clean : class 2000 clean room

Erica Caden's talk @ M2-3

SNO+ Detector

1984-20071 kt Heavy Water D₂O

2007-present 780 t Liquid Scintillator

SNO+ Scientific Program

SNO+ Timeline

SNO+ Detector

- New hold-down netReplace hold-up ropes
- New Purification Plants:
 Scintillator, TeA, TeDiol
- ✓ New Cover Gas
- ✓ Repair and re-install the PMTs
- ✓ Seal the liner in the cavity
- ✓ Upgrade the DAQ
- ✓ New calibration system Internal and External

SNO+ Detector: Rope system

- Cavity AV AV hold-up AV hold-down ✓ New hold-down net **D20** ✓ Replace hold-up ropes **SNO** 1106 kg/m³ UPW 10 loops 999.7 kg/m³ LAB SNO+ 10 ropes 854.7 kg/m³
- Designed to counteract the buoyant force of 1.25 MN
 NIM A, 827 (2016), 152-160
- Ropes:
 - Tensylon (high-performance polyethylene fiber)
 - lower radioactivity
 - ♦ suitable mechanical properties

Status:

Installed in 2012 and tested to its full capacity

SNO+ Detector: Cover Gas

✓ New Cover Gas

Designed as a sealed system

- Reduce Rn gas level by 10⁵ as compared to SNOLAB air
- Balance the pressure swings in the mine
 - mechanical constrains on the maximum dP across the vessel
 - Buffer volumes (3 Bags)
 - o for small external pressure changes
 - Pressure relief system (3 U-traps)
 - $\circ\,$ for instant high pressure changes

Status:

- Commissioned and operational since September 2018
- Reduction 10⁵ in radon concentration (internal water)
 - Constant monitoring with radon monitor, RAD7 and data analysis

Water phase

Commissioning of:

- Water system and its purity (assays)
- Electronics, DAQ,
 - Data taking, quality checks
- Calibration systems
 - o more in Ryan Bayes' & Janet Rumleskie's talks @ M2-3 and Jamie Grove's poster

Detector response validation :

- Optical properties
- Compare data to the model (simulations):
 - energy scale, resolution
 - vertex position, angular resolution
- Measure external backgrounds
 - consistent with expectations
- High purity water Cherenkov data
 - Search for nucleon decays
 - Measure ⁸B solar neutrino flux

Water phase physics: Nucleon decay

- Baryon number violating process
 - Could explain matter-antimatter asymmetry in the universe
- Never been observed experimentally
- □ Decay through invisible modes (e.g. $n \rightarrow 3\nu$)
 - no visible energy directly deposited
 - produces an excited daughter that deexcites and emits gamma rays

Water phase physics: Nucleon decay

- ◆ Phys. Rev. Lett. 96, 101802 (KamLAND)
- proton decays lifetime **2.1×10²⁹ y**
 - ♦ Phys. Rev. Lett. **92**, 102004 (SNO)

SNO+ sets world-leading limit on invisible modes of proton decay:
 3.6×10²⁹ years
 Phys. Rev. D 99, 032008

Water phase physics: ⁸B solar neutrinos

scattered electrons direction correlated with the direction of the incident neutrino
produced Cherenkov radiation directed away from the Sun

Water phase physics: ⁸B solar neutrinos

Analysis of data May- December 2017

• Quality checks -> lifetime of 114.7 days

2νββ

• very rare nuclear decay allowed by Standard Model (SM)

- occurs in nuclei where single beta decay is energetically forbidden
- observed in 11 isotopes (half lives $\sim 10^{18}$ - 20^{24} y)
- 0νββ:
 - only happens if neutrinos are Majorana particles
 - lepton number violation
 - half-life depend on the effective neutrino mass squared
 - probes the absolute mass scale (currently not known)
 - \bullet may help determine the neutrino mass hierarchy

To observe peak at end-point of the $2\nu\beta\beta$ spectrum:

- ✓ Low background,
- ✓ Large detector
- Good energy resolution,
- Signal above background from large quantity isotope

□ Scintillator (LAB-PPO)

- chemical compatibility with acrylic
- stable with good light yield and optical transparency

Tellurium 130

- high natural abundance 34%
- large Q-value: 2.52 MeV
 - ROI at lower background
- $T_{\frac{1}{2}}^{2\nu\beta\beta} = 7.9 \times 10^{20} \text{ y}$
 - o lower $2\nu\beta\beta$ background rate

Loading Te in Scintillator:

- planned 0.5% nat Te = 1330 kg of 130 Te
- easy to increase the isotope loading
- loaded as telluric acid + butanediol derivative
- stable cocktail

Simulations:

- 0.5% natural Te
- 5 years live time
- 3.3 m fiducial volume (17%)
- Light yield 460 Nhits/ MeV

- developing Cherenkov-scintillation separation (⁸B v)
- purification +storage U/G (cosmogenics)

Simulations:

- 0.5% natural Te
- 5 years live time
- 3.3 m fiducial volume (17%)
- Light yield 460 Nhits/ MeV

Projected 2024 0vββ Sensitivities

In 5 years of runnning:

- Expected sensitivity:
 - 2.1 x 10²⁶ years
- Effective mass:
 - 37 89 meV

Large amounts of ¹³⁰Te and low backgrounds \rightarrow excellent $0\nu\beta\beta$ sensitivity

Liquid Scintillator: Purification Plant

- Multi-stage distillation
 - Removes heavy metals
 - Improves UV optical transparency
- Water extraction (LAB-water)
 - Removes K, Ra, Bi and Po
- UPW Steam/N2 stripping
 - Removes gases Rn, Kr, Ar and O_2
- Metal scavengers
 - Removes Pb, Bi, Ra, Ac, Th
- Microfiltration

Liquid Scintillator: Purification Plant

QA/QC requirements:

- Physical properties
 - Density, turbidity, temperature, humidity
- Optical properties
 - UV-Vis spectra, UV-Vis transparency,
 - Light Yield

Status:

- Vacuum leak in the distillation column halted operations for several months. Repaired
- Scintillator purification and filling about to resume.
- Currently ~1.8 tonne inside the AV

□ Scintillator Plant produces **very good** quality product

Distillation improves the optical quality

Telluric Acid: Purification Plant

<u>0.5% Te-LS Target Levels:</u> ²³⁸U-chain: 1.3 x 10⁻¹⁵ g/g ²³²Th-chain: 5.5 x 10⁻¹⁶ g/g

- ➢ Purchased TeA: ~ 10⁻¹¹g/g U/Th
 - Require purification factor ~ 10⁴-10⁵
- Activation of Tellurium by cosmic rays
 - Long-lived isotopes with decays in ROI ⁶⁰Co, ^{110m}Ag, ¹²⁶Sn, ⁸⁸Y, ¹²⁴Sb, ²²Na
 - stored underground since 2015

Purification relies on:

- solubility of TeA in water, based on pH: $\frac{\text{Te}(\text{OH})_6}{\underset{\text{insoluble}}{\text{Te}(\text{OH})_5}\text{O}^- + \text{H}^+$
- insoluble contamination:
 - dissolve TeA in hot UPW and filter it
- soluble contamination:
 - force re-crystallization with cold nitric acid
 - pump away liquid and dry the crystals
 - rinse with UPW/nitric acid and purge

Tellurium Diol Production Plant

□ Loading Te into scintillator

- mix TeA and butanediol (BD) to produce organotellurate complex TeBD
- TeBD can be mixed with LAB
- □ Materials prepurified: TeA, LAB, UPW, and BD

Summary

Well used time during Water Phase

- Two physics papers published
- Still collecting data with very low background
 - proved effectiveness of the cover gas
- Measured external background
 - consistent with DBD target levels
- Analysis ongoing and more papers in preparation

□ Started filling detector with scintillator

- In a few months, start taking data
 - measure the internal backgrounds

□ All tellurium process systems installed and being commissioned

getting ready for loading tellurium and 0vββ data!

Thank you!

