Towards measuring atomic parity violation effects in francium

Mukut Ranjan Kalita TRIUMF

CAP 2019

Gerald Gwinner, Tim Hucko, Michael Kossin, Andrew Senchuk, Anima Sharma

John Behr, Alexandre Gorelov, Matt Pearson

Eduardo Gomez

Luis Orozco

Seth Aubin

Atomic parity violation (aka APNC, PNC)

- Atomic physics experiment, we use laser cooling and trapping techniques and study electronic transitions dominated by electromagnetism.
- > Small contribution to electronic transitions by Z boson exchange leading to parity violation effects.

Nuclear spin independent:

Weak neutral interaction between electrons and nucleons (mostly neutron)

Nuclear spin dependent:

Main contribution from anapole moment of heavy nuclei.

Atomic parity violation (aka APNC, PNC)

Search for extra bosons

Q_{weak} Collaboration, Nature 557, 207–211 (2018)

M. S. Safronova et al. Rev. Mod. Phys. 90, 025008

G. Toh et al. arXiv:1905.02768v2

Atomic parity violation (aka APNC, PNC)

- Test SM at low energies
- Search for extra bosons

D. Antypas et al. *Nat. Phys.* **15**, 120–123 (2019)

R. Diener et al. Phys. Rev. D 86, 115017

Measuring APV in ns → (n+1)s transition in heavy alkali atoms

- Electric dipole forbidden.
- Small transition probability due to APV effects (≈ 10⁻²⁰ of allowed in Fr).
- Use Stark Interference technique. (M. Bouchiat, C. Bouchiat J. Phys. (Paris) 36 (1975), 493)

$$R \propto |A_{\text{stark}} + A_{\text{APV}}|^2 \approx (A_{\text{stark}})^2 \notin 2Re(A_{\text{stark}} A_{\text{APV}}^*)$$

Interference term changes sign upon parity reversal

From measurement to extracting Q_w

Modulation of decay fluorescence measurement → A_{APV} / A_{stark}

A_{stark} calibrated by separate measurements

Good experiment and good theory⇒ good test

APV experiments:

Best measurement so far (Boulder) 0.35% (exp.) measurement.

Science 275 (1997) 1759

Purdue Elliot et at. (in preparation).

Planned exp. using ions (Groningen, U. of Washington, UCSB)

APNC 18x larger

Th. can be done ≈ Cs

1-2% measurement done. Theory at several % level.

Yb (exp. 0.5% level) Nat. Phys. **15**, 120–123 (2019)

Range of isotopes available

The francium trapping facility

Fr has no stable isotope → experiment at TRIUMF 500 MeV proton beam, UC_x target.

The francium trapping facility

lons up to 2 ×10⁹ /s delivered

Other Fr traps:

- INFN Legnaro (Italy).
- Tohoku University (Japan).

Fr+ ion enter • Glass cell with non stick coating (J. A. Fedchak et al. NIM Phys. R A

391 (1997) 405-416)

- ✓ Two lasers.
- ✓ Quadrupole B field.
- ≈ 1 million atoms trapped

8

Exoskeleton cage

neutralizer assembly

The francium trapping facility

- Up to 50% transfer
- 20 s lifetime

D1 isotope shifts in a string of light Fr isotopes.

Collister et. al. Phys. Rev. A 90 052502 (2014) and A 92, 019902(E) (2015).

Benchmarks state of the art atomic theory.

R. Collister, PhD, 2015 (U. of Manitoba) J. Zhang, PhD, 2014 (U. of Maryland)

- Hyperfine anomaly in light Fr isotopes.
 Zhang et. al. Phys. Rev. Lett. 115 042501 (2015)
- ➤ Reconfirms that in terms of nuclear structure 208-213 are "simple" nuclei for APNC/anapole.

- ❖ Francium 7p_{3/2} photoionization
 Collister et. al. Can. J. Phys (2017)
- Determines loss of atoms from trap during spectroscopy

➤ Observed for the first time 7s-8s transition using two photon spectroscopy in ²⁰⁸Fr, ²⁰⁹Fr, ²¹⁰Fr, ²¹¹Fr, ²¹³Fr.

Radioactive lifetime ($T_{1/2}$) from 50 s to 192 s.

Isotope shifts.

$$\left(\frac{M_{A}M_{A'}}{M_{A}-M_{A'}}\right)\delta\theta_{IS,D1} = (N_{D1}+S_{D1}) - (N_{SS}+S_{SS})\frac{F_{D1}}{F_{SS}} + \frac{F_{D1}}{F_{SS}}\left(\frac{M_{A}M_{A'}}{M_{A}-M_{A'}}\right)\delta\theta_{IS,SS}$$

Slope $\propto (\Delta \Psi(0)^2)_{D1} I(\Delta \Psi(0)^2)_{SS}$

 1.228 ± 0.019 (experiment)

 1.234 ± 0.010 (ab. initio theory)

M. Kalita et al. with theory by V. Dzuba, V. Flambaum, M. Safronova Phys. Rev. A 97, 042507 (2018)

Transparent electrodes, ultra precise laser lock for 7s → 8s

- Transparent Electric field plates with ITO coating.
- ✓ Works at 10⁻¹⁰ Torr, up to 6200 V/cm without sparks for hours at a time.
- ✓ Operate magneto optic trap between the field plates!

- ➤ Laser lock for 506 nm based on ULE Fabry Perot cavity.
- ✓ < 200 kHz drift in 6 hr → absolute stability at the 10⁻¹⁰ level!

Basis for PNC : Stark induced 7s → 8s

- ➤ Laser locked to ULE Fabry Perot cavity.
- > E field using ITO electrodes.

Basis for PNC: Stark induced 7s → 8s observed in September 2018!

- Laser locked to ULE Fabry Perot cavity.
- E field using ITO electrodes.

- > This is the transition we will use to do our PNC experiment.
- ➤ 10-9 times smaller than allowed transition.
- Side note: we have also observed the equivalent transitions in ⁸⁷Rb. Poster

16

Things to do before attempting Stark interference:

- Magnetic dipole transition M_{hf} and M_{rel.}
- Measure M_{hf} / A_{stark}.
- M_{hf} can be calculated accurately
- Calibrate A_{stark}
- Use calibrated A_{stark} in A_{APV} / A_{stark}

System upgrade: increase power for 7s → 8s using a cavity in vacuum

- Aim for first generation: factor of 1000 build up
- Install late summer, 2019

From left to right: Michael Kossin, A.C. DeHart, Matt Pearson, Seth Aubin, Gerald Gwinner, Eduardo Gomez, Mukut Kalita, Alexandre Gorelov, John Behr, Luis Orozco, Tim Hucko, Anima Sharma. Not in the picture: Andrew Senchuk

Conclusion:

- We can routinely trap francium at the Francium Trapping Facility at TRIUMF and transfer them to our measurement region.
- We have observed the 7s-8s transition in several isotopes using two photon spectroscopy.
- Recently, we have observed the single photon Stark induced 7s-8s transition in ²¹¹Fr for the first time
- > This is the transition we will use to do our PNC experiment.
- We are preparing for measurement of magnetic dipole transition in the 7s-8s in Fall 2019.
- We are aiming to do our first attempt at observing the PNC effect in francium in a year or two.

Thank You

Back up slides after this

Neutron Skins, a correction to atomic PNC

- Weak $e^- p$ coupling ≈ 1 $4 \sin^2 \theta_{\rm W} \approx 0$ So mostly sensitive to weak $e^- - n$ coupling $\langle s|H_W|p\rangle \stackrel{\sim}{\propto} Z^2N$
- Momentum transfer:
 Q ≈ 2.4 MeV/c Cs, 9 MeV/c Fr →
 - $\lambda \sim$ 82, 22 fm \Rightarrow Sensitivity to $\langle r_{
 m neutron}^2 \rangle$
- Brown Derevianko Flambaum PRC 2009, Summarizing nuclear phenomenology and experiment:

For 133 Cs, $0.23\pm0.05\%$ correction For 211 Fr, $0.41\pm0.12\%$ correction

 Sil et al. 2 EFT's spanning symmetry energy agrees (PRC 2005): JLAB's PREXI 2012 Parity-violating e $^-$ + 208 Pb Q tuned to neutron skin Model independent \rightarrow neutron skins larger by 2 \pm 1 We hope PREXII refines this

The francium experiment

Accounting for correlations in some systematic uncertainties between the two measurement periods, the combined result is $Aep = -226.5 \pm 7.3$ (statistical) ± 5.8 (systematic) p.p.b. The total uncertainty achieved (9.3 p.p.b.) sets a new level of precision for parity-violating electron scattering (PVES) from a nucleus

to $-\zeta/\beta$ of $(-\zeta/\beta)_p = (Q_p/Q_w)(-\zeta/\beta)_{N=103} \approx -1.2 \,\mathrm{mV \, cm^{-1}}$. **b**, Bounds on light Z'-mediated PV electron-proton interactions. The black line represents the 1σ limit on the particular coupling, shown for a large range of the boson mass $m_{Z'}$. The coloured region in the plot corresponds to the parameter space excluded by the Yb experiment. The low-mass $(m_{Z'} < 100 \,\mathrm{eV})$ limit for the coupling is $|g_e^A g_p^V| = 1.6 \times 10^{-12}$, and the corresponding large-mass asymptotic limit $(m_{Z'} > 100 \,\mathrm{MeV})$ is $|g_e^A g_p^V| / m_{Z'}^2 = 1.3 \times 10^{-6} \,\mathrm{GeV^{-2}}$. **c**, Bounds on light Z'-mediated PV electron-neutron interactions. This result comes from combining existing limits on the effective electron-nucleon coupling, derived from the Cs PV experiment⁴, with the Yb experimental limits shown in **b**. The low-mass limit for the interaction is $|g_e^A g_p^V| / m_{Z'}^2 = 9.3 \times 10^{-7} \,\mathrm{GeV^{-2}}$.

Neutralizer:

- ✓ Zr, work function 4.0 eV, mechanically strong, ionization potential of Fr 4.1eV.
- ✓ Up-to 30% release, 800°C, 500,000 cycles.

Magneto optical trap
Trapping F = -kx
Cooling F = -av