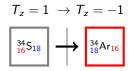
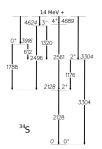
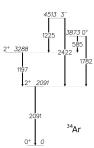
Gamma Ray Spectroscopy of ³⁴Ar Using Fusion Evaporation


Isaiah Aditya Djianto

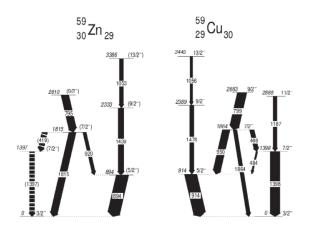
Department of Chemistry Supervisor: Dr. Corina Andreoiu Simon Fraser University




Mirror Nuclei

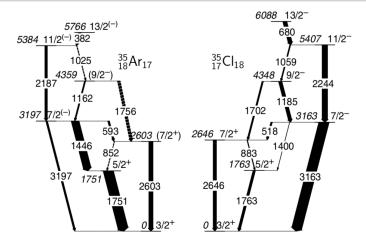
Mirror nuclei are defined by a switch of proton and neutron numbers in a nuclide

Doing this allows us to observe isospin symmetry directly



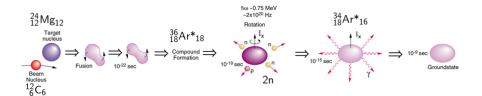
Symmetric Mirror Nuclei

Theory predicts mirror nuclei to behave the same:


- Energy levels are similar
- Relative intensity of transitions fairly similar

C. Andeoiu et al., Eur. Phys. J. A 15, 459-462 (2002).

Asymmetric Mirror Nuclei


- Differences in energy and intensity possible
- Predictions of theory start breaking down

J. Ekman et al., Phys. Rev. Lett. 92, 132502 (2004).

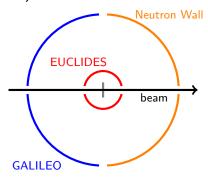
Fusion Evaporation

35 MeV 12 C beam on 24 Mg target (0.5 mg/cm²)

2n channel and $^{34}\mathrm{Ar}$ nucleus shown as an example above. Many other nuclei are produced.

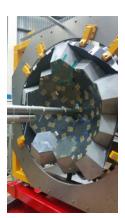
Using PACE4 to simulate the fusion evaporation experiment:

Select Products of Reaction


Product	Cross-section (mb)	% of Simulated Events	
:	:	:	
³⁴ Ar	0.287	0.03	
³⁴ Cl	133	13.9	
³⁴ S	92.3	9.65	
:	:	:	
³¹ P	481	50.3	
:	:	:	

Equipment

Experiment was conducted at the Laboratori Nazionali di Legnaro (LNL) – Istituto Nazionale di Fisica Nucleare (INFN)


Detector Arrays

- **EUCLIDES** charged particles
- GALILEO γ -rays
- Neutron Wall neutrons



GALILEO consist of 24 HPGe detectors

Neutron wall has 15 liquid scintillators and a smaller pentagonal central unit



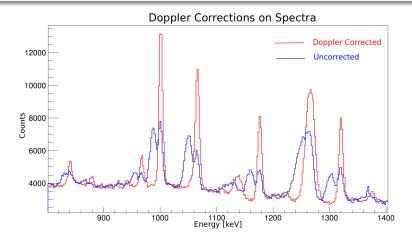
EUCLIDES ball of 38 E-DE Si telescopes

Courtesy F.H. Garcia

EUCLIDES Charged Particle Identification

Associating γ -ray coincidences with charged particle events

Doppler Corrections


Particles in flight result in **Doppler shift** of γ -rays.

$$E_{observed} = E_{\gamma} \frac{\sqrt{1-\beta^2}}{1-\beta\cos\theta}; \qquad \qquad \beta = \frac{v_d}{c}$$

- Peak broadening effects
- Event-by-event reconstructions possible for EUCLIDES data

Notable Features

- Multiple peaks
- Peaks shift in energy
- Blurring and widening of some peaks

Building a Level Scheme

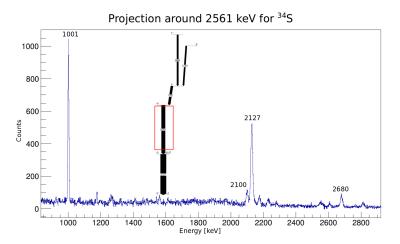
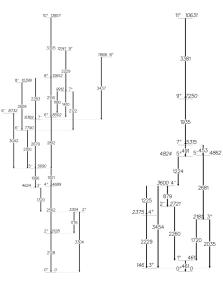



Figure: A spectrum from the 2p channel gated on the 2561 keV transition

CAP Congress (2019) 12 /

Verifying Energy Levels

- ³⁴S energy levels observed match levels listed in NNDC up to 14 MeV
- ³⁴Cl energy levels observed to 10 MeV
- 34Ar needs more statistics

Level scheme of ³⁴S observed Level scheme of ³⁴CI observed

Summary and Future Work

- Validate Doppler corrections with known nuclei
- Examine 2n channel for ³⁴Ar

Acknowledgements

Supervisor Dr. Corina Andreoiu

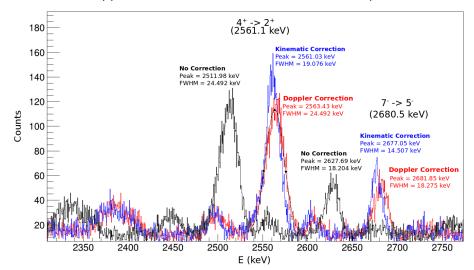
Experiment Fatima H. Garcia

Dr. Jennifer L. Pore GALILEO Collaborators

Full List of Cross-sections

³⁶Ar Compound Nucleus

1. Yields of residual nuclei


Z	N	A	events	percent	x-section (mb)
18	17	35 Ar	49	0.49%	4.68
17	18	35 Cl	61	0.61%	5.83
18	16	34 Ar	3	0.03%	0.287
17	17	34 Cl	1390	13.9%	133
16	18	34 S	965	9.65%	92.3
17	16	33 Cl	1	0.01%	0.0956
16	17	33 S	585	5.85%	55.9
15	18	33 P	35	0.35%	3.35
16	16	32 S	377	3.77%	36
16	15	31 S	333	3.33%	31.8
15	16	31 P	5032	50.3%	481
15	15	30 P	9	0.09%	0.86
14	16	30 Si	2	0.02%	0.191
14	14	28 Si	1113	11.1%	106
13	14	27 Al	45	0.45%	4.3
TOT	AL		10000	100%	956

²⁸Si Compound Nucleus

```
events
                              percent
                                          x-section (mb)
         28 Si
         27 Si
                    6484
                                6.48%
                                             65.1
         27 Al
                                18.3%
                                             184
                                16.8%
         26 Mg
                                2.74%
                                             116
         23 Mg
        23 Na
                    34651
                                34.78
                                             348
10 10
                                            83.1
TOTAL.
                                 100%
                                            1e+03
```

Example of Kinematic Reconstruction

Doppler and Kinematic Corrections on ³⁴S Spectrum

