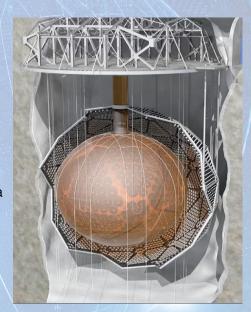
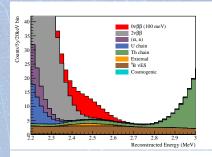
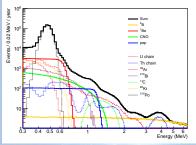
Continuing Prospects of the SNO+ Calibration Program

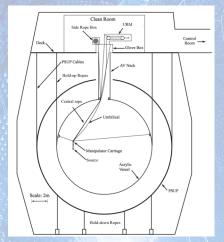
Ryan Bayes

Laurentian University


2019 CAP Congress June 3, 2019


The SNO+ Experiment


- Detector situated in Vale Creighton Mine
 - 6 km water equivalent rock overburden
 - Contained in a cavity 30 m tall and 10 m in radius
- Composed of a 6 m radius spherical acrylic vessel
 - To be filled with a liquid scintillator
 - Now filled with 900 Ton ultra pure water.
- Surrounded by ≈9400 PMTs mounted on a 8.4 m radius geodesic sphere.
- See talk by Aleksandra Bialek (Session M1-8)


SNO+ Calibration Strategy

- Validate response at energies for
 - $\triangleright 0\nu\beta\beta$
 - Low energy solar neutrinos
 - Reactor anti-neutrinos
 - Geo anti-neutrinos
- Optical and radioactive sources
- Internal and external deployments
- Optics to be evaluated
 - PMT response and timing
 - Rayleigh scattering
 - Absorption of materials
- Radioactive sources validate
 - PMT response
 - Energy reconstruction
 - Position reconstruction
 - Event tagging / efficiency

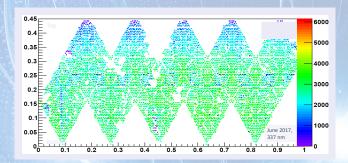
SNO+ Calibration Hardware

- Umbilical/central rope stored in URM
- Four rope boxes control side ropes
- URM and rope boxes connected to AV through Universal Interface (UI)

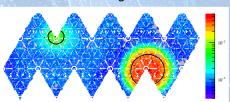
- Sources deployed via system of ropes
 - Central rope
 - Side ropes
 - Source steered in two dimensions
- Services carried via polyurethane (tygothane) "umbilical"

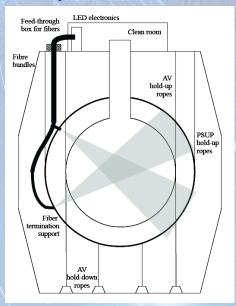
External Deployment

- Guide tubes pass outside AV
- Complementary source deployment

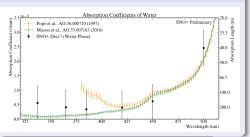

Optical Calibration

- Provides (nearly) isotropic light occupancy
- Provides strong measurement of PMT calibrations

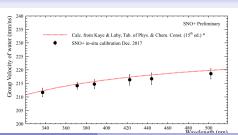

- Diffuser coupled to optical fibre (Laserball)
- Light produced from N2 laser
- Laser dye system used for other wavelengths


2019 CAPC

Embedded Laser Light Injection System

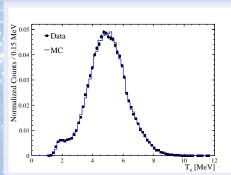

- PSUP embedded optical fibres
 - 106 laser injection sites
 - 96 dedicated to timing studies
 - ► 10 sites dedicated to scattering modules
- Calibrations conducted without deploying source
 - Plan to run as a constant
 PMT timing monitor

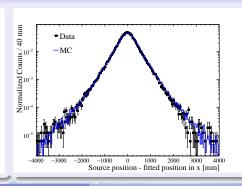
Leading Optical Results


Absorption Coefficient in Water

- Produced from internal and external laserball measurements
- Significant check for water phase reconstruction and simulation

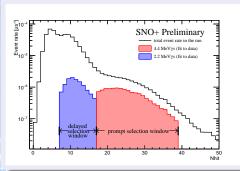
 Water measurements are a useful input to scintillator phase


Group Velocity

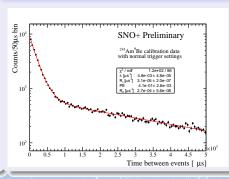

Reconstruction Response

- Measured from ¹⁶N in water
 - ▶ $^{16}N\rightarrow ^{16}O\beta\gamma$ (6.13 MeV)
- Compton scatters produces signal spectrum
- β used to tag signal
- Signal spectra from data and MC to be compared

Energy Validation



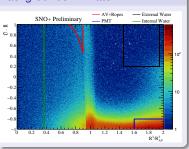
Position Validation



Neutron Capture Measurements

Event Selection

Capture Time



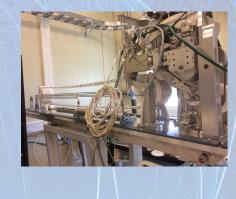
- Completed using ²⁴¹Am⁹Be source
 - Produces a neutron and a 4.4 MeV \(\gamma \)
 - ightharpoonup neutron capture produces a 2.2 MeV γ
- Significant for $\bar{\nu}$ detection
- Neutron detection efficiency ≈ 46%

 See poster by Jamie Grove: "AmBe Source Calibrations in Measuring Reactor Antineutrinos in SNO+ Water Phase"

Scintillator Requirements

Backgrounds in Water

- SNO+ requires contamination below 10⁻¹⁷g U/g
 - Calibration hardware maintains purity requirements
 - Materials chosen for LAB compatibility


Radon Monitor

- Static N₂ volume prevents Rn ingress
 - Systems connected to detector must maintain cover gas
- Dedicated radon monitor tests cover gas purity

Hardware Upgrades

- Complete UI installed
 - Constructed for use with scintillator
 - Systems maintain cover gas through calibrations

New URMs have been developed

- First has been assembled and tested in Sudbury
- Second is on its way from Portugal

Updated Calibration Sources

- Updated Laserball (Sussex) and AmBe (Snolab) sources in preparation
- Introducing tagged (UofA) and untagged (LIP) encapsulations to contain arbitrary sources

Available Energies

- Several radioactive isotopes under consideration
- First source to be deployed is ²⁴¹Am⁹Be

Source	Method	Deposited Energy Range
⁴⁸ Sc	Beta Tagged	2 - 3.5 MeV
¹³⁷ Cs	Untagged	0.1 - 0.68 MeV
²⁴¹ Am ⁹ Be	Time Coincidence	0.1 - 4.4 MeV

- Energy range of deposited energy covers that of physics
- Will also deploy ¹⁶N source external to AV
 - Expect to relate measurements to internal water deployments

R. Bayes (LU)

Conclusion

- Calibration of SNO+ water phase is complete
 - Results have been used in published papers
 - Data is still being used to refine analysis for scintillator phase
- SNO+ is progressing towards scintillator phase
- Calibration systems are similarly being upgraded
 - Embedded injection system commissioned
 - Deployment systems and sources are in development
- Goal is to begin deployments soon after complete scintillator fill

R. Bayes (LU) SNO+ Calibrations 2019 CAPC 1