

Nuclear ionization yield measurements in Neon for NEWS-G

Marie Vidal
CAP Congress 2019
June 5th

NEWS-G

- Spherical metallic vessel filled with noble gas and central anode with HV: Spherical Proportional Counter
- Main goal: search for low mass Dark Matter
- Other applications: CE ν NS detection, 0 $\nu\beta\beta$ search
- Priority: ionization yield measurements for gas mixture (Neon) interpretation of data for (ν, χ) interactions.

Sedine: Laboratoire souterrain de Modane

Detectors

- Diameter: 15, 30, 60, 140 cm
- Sphere: stainless steel, copper, glass, aluminum
- Diameter sensor: 1 16 mm
- Gas: Neon, Argon, Helium
- High voltage on sensor: $\vec{E} \sim 1/r^2$
- Large gain
- Low energy threshold

SPC: principle

- 1. Primary ionization

 Mean energy necessary to generate 1 e⁻/ion

 pair: ~30eV in Neon
- 2. Drift of primary e⁻ towards sensor
 Typical drift times:
 ~ 100 μs
- 3. Avalanche in the vicinity of the anode Generation of thousands of secondary e⁻/ion pairs
- Signal formation
 Current induced by ions → sphere surface
- 5. Read out: preamplifier

Motivation for ionization yield measurements

- Energy calibration of gaseous detector: gamma sources γ rays interact with electrons \rightarrow electronic recoils
- (ν, χ) interact with nuclei \rightarrow nuclear recoil
- The ionization yield, or quenching factor, is the ratio of the number of charges produced by an electron and a nuclear recoil of the same energy.

$$QF(E_{nr}) = \frac{E_{ee}}{E_{nr}}$$

- QF measurements priority for NEWS-G (interpretation of data): low energies → 1st QF measurement in Neon gas

Quenching factor measurements

- Source of known nuclear recoil energies (E_{nr}): neutrons scatter off nuclei
- → Monoenergetic neutron beam
- Energy calibration: γ source
- → Measured recoil energy deposited in the gas (E_{ee}) associated with electronic recoils
- The TUNL (Triangle University National Laboratory) facility has a tandem 10MV accelerator
- → Organization of 2 measurements campaigns

Experiment summary

- E_n: known
- θ : chosen
- E_{nr} : calculated $E_{nr}(E_n, \theta)$
- E_{ee}: extracted energy mean from energy spectrum
- Backing detectors (BD)
- Beam Pick-off Monitor (BPM)

Experiment summary

- 2018 spring campaign: D+D \rightarrow n+3He+ γ : Neutron beam 3.68 MeV 4 energy points investigated: 4.95-28 keV_{nr}
- 2019 winter campaign: p + 7 Li \rightarrow n + 7 Be+ γ : Neutron beam 545keV 8 energy points investigated: 0.33-6.5 keV_{nr}
- Gas: Neon:CH₄ (97:3)
- Pressure (2018/2019): 500mbar/2bar
- Energy calibration: Fe55 peak at 5.9keV

Quenching factor: experimental set up

Annulus configuration

Multiple energies configuration

Calibration: Fe55 peak at 5.9 keV

Quenching factor measurements Analysis

Time of flight: time of the neutron event at backing detector – time of the neutron event at BPM

Quenching factor measurements Analysis

Location of SPC events in time relative to the DAQ trigger (/BD trigger)

- \rightarrow Excess ~ 40 μ s
- → Signal of interest!

Dependence in rise time and onset time

Quenching factor measurements Analysis

Location of SPC events in time relative to the DAQ trigger (/BD trigger)

- \rightarrow Excess ~ 40 μ s
- → Signal of interest!

Dependence in rise time and onset time

Energy spectrum

Recoil energy spectrum: 2.93 keVnr

Conclusion

- We demonstrated the feasibility of QF measurements in gases using a SPC and a neutron beam
- We took 12 energy points from 0.3 keV_{nr} up to 28 keV_{nr}
- We reached single electron
- The analysis is on-going

Canada Excellence Research Chairs

Chaires d'excellence en recherche du Canada

Thank you

NEWS-G: Example pulse

Amplitude provides estimation of the energy of the event.

Rise time provides an estimation of the radial distance of the event \rightarrow Rise time linked to diffusion of the electrons along their drift toward anode.

Experiment conditions

Shieldings have been added around the beam line.

Polyethylene doped with B for neutron capture

Lead wall for gammas

Lead shield on backing detectors to improve gammas background

$$E_{nr}(E_{n}, \theta)$$

$$E_{nr}(E_n, \theta) = 2E_n \frac{M_n^2}{(M_n + M_T)^2} \left(\frac{M_T}{M_n} + \sin^2 \theta - \cos \theta \sqrt{\frac{M_T}{M_n} - \sin^2 \theta} \right)$$

Recoils events selection

