Nuclear kinetic density from \textit{ab initio} theory

Michael Gennari
TRIUMF

In collaboration with
Petr Navrátil
No-core shell model (NCSM)

- NCSM is an *ab initio* approach to solve the many-body Schrödinger equation for bound states (narrow resonances) starting from *high-precision NN+NNN interactions*
- Uses large (but finite!) expansions in HO many-body basis states
- Translational invariance of the internal wave function is preserved when single-particle Slater Determinant (SD) basis is used with N_{max} truncation

\[
\langle \tilde{r}_1 \cdots \tilde{r}_A \tilde{\sigma}_1 \cdots \tilde{\sigma}_A \tilde{\tau}_1 \cdots \tilde{\tau}_A | A\lambda J M \rangle_{SD} = \langle \tilde{\xi}_1 \cdots \tilde{\xi}_{A-1} \tilde{\sigma}_1 \cdots \tilde{\sigma}_A \tilde{\tau}_1 \cdots \tilde{\tau}_A | A\lambda J M \rangle \phi_{000}(\tilde{\xi}_0)
\]
No-core shell model (NCSM)

- NCSM is an *ab initio* approach to solve the many-body Schrödinger equation for bound states (narrow resonances) starting from high-precision NN+NNN interactions
- Uses large (but finite!) expansions in HO many-body basis states
- Translational invariance of the internal wave function is preserved when single-particle Slater Determinant (SD) basis is used with N_{max} truncation

$$
\langle \vec{r}_1 \cdots \vec{r}_A \sigma_1 \cdots \sigma_A \tau_1 \cdots \tau_A | A\lambda M \rangle_{SD} = \langle \vec{\xi}_1 \cdots \vec{\xi}_{A-1} \sigma_1 \cdots \sigma_A \tau_1 \cdots \tau_A | A\lambda M \rangle \varphi_{000}(\vec{\xi})
$$
Chiral effective field theory

- NCSM requires diagonalization of Hamiltonian built from kinetic terms and realistic nuclear potentials rooted in QCD
- Interaction matrix elements are generated from chiral effective field theory approach (EFT) by
 a) identifying relevant symmetries and degrees of freedom of low-energy QCD
 b) identifying relevant separation scales of low-energy QCD ($\Lambda_\chi \approx 1$ GeV hard scale)
- Allows for high quality control over truncation error at each chiral level
Chiral effective field theory

- NCSM requires diagonalization of Hamiltonian built from kinetic terms and realistic nuclear potentials rooted in QCD
- Interaction matrix elements are generated from chiral effective field theory approach (EFT) by
 a) identifying relevant symmetries and degrees of freedom of low-energy QCD
 b) identifying relevant separation scales of low-energy QCD ($\Lambda_\chi \approx 1$ GeV hard scale)
- Allows for high quality control over truncation error at each chiral level
NN and 3N interactions – N⁴LO(500)+3Nlnl

- Two-nucleon (NN) interaction systematic from LO to N⁴LO

- Three-nucleon (3N) interaction at N²LO
 - Navrátil, 650 MeV local cut-off and 500 MeV non-local cut-off
Nuclear density

\[
\langle A \lambda_f J_f M_f | \rho_{\text{op}}(\vec{r} - \vec{R}, \vec{r}' - \vec{R}) | A \lambda_i J_i M_i \rangle \\
= \left(\frac{A}{A-1} \right)^{3/2} \sum \frac{1}{I_f} (I_i M_i K k | J_f M_f) \left(Y_i^* (\vec{r} - \vec{R}) Y_i^* (\vec{r}' - \vec{R}) \right)^{(K)}_k \\
\times R_{n,i} \left(\frac{A}{A-1} |\vec{r} - \vec{R}| \right) R_{n',i'} \left(\frac{A}{A-1} |\vec{r}' - \vec{R}| \right) \\
\times (M^K)^{-1}_{n,i,n',i',n_1,l_1,n_2,l_2} (-1)^{l_1+ l_2 + K + j_2} \hat{f}_1 \hat{f}_2 \hat{R} \left\{ \begin{array}{ccc} j_1 & j_2 & K \\ l_2 & l_1 & 1/2 \end{array} \right\} \\
\times \frac{(-1)^{SD}}{R} \langle A \lambda_f J_f \| (a_{n_1 l_1 j_1}^* \tilde{a}_{n_2 l_2 j_2})^{(K)} \| A \lambda_i J_i \rangle_{SD}
\]

Nonlocal translationally invariant density (trinv)

- Translationally invariant nuclear density is obtained from intrinsic wavefunction
- Slater determinant description is advantageous for \(A > 4 \)
- When slater determinant description is used, there is a spurious COM contribution
- It is possible to exactly remove this contamination

Microscopic optical potentials derived from \textit{ab initio} translationally invariant nonlocal one-body densities

Michael Gennari†

University of Waterloo, 200 University Avenue West Waterloo, Ontario N2L 3G1, Canada and TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Matteo Vorabbi,1 Angelo Calci, and Petr Navrátil†

TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Normalization

\[
\int d\vec{x} \langle A \lambda J M | \rho_{\text{op}}^{\text{phys}} (\vec{x}) | A \lambda J M \rangle = A
\]
Ground state density of 4He, 16O

Interaction: NN-N^4LO(500)+3Nlnl

Local density
Nuclear kinetic density

- Nuclear kinetic density is a fundamental, non-observable quantity of density functional theory (DFT)
- With the nonlocal density, we can compute the kinetic density from the \textit{ab initio} NCSM
- Effects of COM removal in nuclear density should be amplified in DFT quantities like the kinetic density, due to the application of gradients on the nuclear density.

\[
\mathcal{H}_{kinetic}(\vec{r}) = \frac{\hbar^2}{2m} \tau_0(\vec{r})
\]

\[
\tau_N(\vec{r}) = \left[\vec{\nabla} \cdot \vec{\nabla}' \rho_N(\vec{r}, \vec{r}') \right]_{\vec{r} = \vec{r}'}
\]

\[
\nabla_u \nabla'_{-u} \rho(\vec{r}, \vec{r}') = \sum_{n,l,n',l',K,k,m_l,m_{l'}} \alpha_{n,l,n',l'}^{K,i,f} (l m_l l' m_{l'} | LM) \\
\times \left[\nabla_u R_{n,l}(r) Y^*_{l,m_l}(\hat{r}) \right] \left[\nabla'_{-u} R_{n',l'}(r') Y^*_{l',m_{l'}}(\hat{r}') \right]
\]
Nuclear kinetic density

- Nuclear kinetic density is a fundamental, non-observable quantity of density functional theory (DFT)
- With the nonlocal density, we can compute the kinetic density from the \textit{ab initio} NCSM
- Effects of COM removal in nuclear density should be amplified in DFT quantities like the kinetic density, due to the application of gradients on the nuclear density

\textbf{Interaction}: \textit{NN-N^4LO(500)+3Nlnl}
COM treatment in DFT

- Basic treatment for COM contamination can be introduced in the kinetic density term

\[
H_{kinetic}(\vec{r}) = \frac{\hbar^2}{2m} \left(1 - \frac{1}{A}\right) \tau_0(\vec{r})
\]

- In the NCSM, \(\tau_0(\vec{r})\) is the COM contaminated nuclear density (wiCOM)
- Can compare COM removal techniques by
 - computing translationally invariant kinetic density
 - computing COM contaminated kinetic density and applying removal procedure shown above
Comparison of COM removal techniques

- Inverse proportionality in A pushes DFT curve further from the \textit{ab initio} kinetic density curve.
- Still a notable difference in systems like ^{12}C and ^{16}O.
- COM removal procedure likely important in deformed nuclei.

\[N_{\text{max}} = 10 \quad ^{8}\text{He} \]
\[N_{\text{max}} = 14 \quad ^{4}\text{He} \]
\[N_{\text{max}} = 8 \quad ^{12}\text{C} \]
\[N_{\text{max}} = 8 \quad ^{16}\text{O} \]
Conclusions and outlook

- **Conclusions**
 - We observed significant differences in the kinetic density of light systems when the COM was removed.
 - The effect of COM removal is significant in larger systems like ^{16}O.
 - More details on some of these results can be found in Phys. Rev. C 99, 024305 (2019).

- **Outlook**
 - Pursuing implementation and extensions to natural orbitals framework in the NCSM.
 - Attempting an extrapolation scheme for nuclear observables using Gaussian processes.
Thank you
Merci

www.triumf.ca
Follow us @TRIUMFLab