2-7 June 2019
Simon Fraser University
America/Vancouver timezone
Welcome to the 2019 CAP Congress Program website! / Bienvenue au siteweb du programme du Congrès de l'ACP 2019 !

Operational Principles for the Dynamics of a Rolling Motor

5 Jun 2019, 13:15
SSB 7172 (Simon Fraser University)

SSB 7172

Simon Fraser University

Oral Competition (Graduate Student) / Compétition orale (Étudiant(e) du 2e ou 3e cycle) Physics in Medicine and Biology / Physique en médecine et en biologie (DPMB-DPMB) W2-3 Molecular Motors (DPMB) | Moteurs moléculaires (DPMB)


Ms Lavisha Jindal (Simon Fraser University)


Translocation of a ligand bound spherical cargo which is biochemically associated to a receptor bound substrate through a Burnt bridges ratchet mechanism is fundamentally altered if the cargo is capable of rolling. Directed rolling is an effective method for cargo translocation and arises only for specific ranges in parameter space of this system. In this study we present the dynamical principles of this class of motors and offer a comparison with conventionally studied motors that translocate without rolling. We observe the changes in the dynamics of the cargo as a function of the substrate properties (like stickiness, elasticity, spacing, concentration of receptors and valence) and the chemistry between the cargo and the substrate (force of attraction, rate of receptor cleaving). We evaluate the dynamics of the rolling motor by computing two metrics: the correlation between translational displacement and rotational displacement and the ratio of the total displacement over total distance travelled by the cargo. Finally, we compare the dynamics with a cargo executing pure translational motion on the following basis relevant to motors: speed, detachment probability, persistence and processivity.

Primary authors

Dr Eldon Emberly (Simon Fraser University) Ms Lavisha Jindal (Simon Fraser University)

Presentation Materials

There are no materials yet.