

Accelerated Diffusion-Weighted Hyperpolarized ¹²⁹Xe Gas Lung MRI

Fumin Guo¹, Matthew Fox^{2,3}, Grace Parraga^{4,5}, and <u>Alexei Ouriadov^{3,2}</u>

¹Sunnybrook Research Institute, University of Toronto, Toronto, Canada,
 ²Lawson Health Research Institute, London, Canada,
 ³Department of Physics and Astronomy, ⁴Robarts Research Institute,
 ⁵Department of Medical Biophysics, Western University, London, Canada

June 4, 2019

Western Science

Physics & Astronomy

Declaration of Relevant Financial Interests and/or Relationships

A. Ouriadov and all co-authors:

We have no relevant financial interests or relationships to disclose with regard to the subject matter of this presentation.

Thermal Polarization

- Nuclei with spin = ½ are placed in an externally applied magnetic field
- Polarization (P) arises from a population difference in energy levels of spin = ¹/₂ nuclei

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

$$E = +\frac{1}{2} \gamma \hbar B_0$$

$$E = -\frac{1}{2} \gamma \hbar B_0$$

$$B_0$$

Spin-Exchange Optical Pumping

- Rubidium electrons are optically pumped into an excited state using circularly polarized laser light
- The electronic polarization of Rb is transferred to the noble gas nuclei via collisions

Spin-Exchange Optical Pumping

¹²⁹Xe Polarizer, Polarean, USA

Polarization: 30%

Cryogens required for operation

Production Rate: ~800ml/hour

¹H MRI vs Hyperpolarized Gas MRI

Hyperpolarized Gas MRI

Helium-3

Xenon-129

Kirby M. et al. Radiology 265, 600-610, (2012)

¹²⁹Xe MRI Hardware

Single Breath-hold Isotropic ¹²⁹Xe MRI

Anterior

Superior

Posterior

Isotropic ¹²⁹Xe MRI in a healthy volunteer provides sufficient SNR for reconstructed coronal and axial planes

Inferior

Barker A, et all, ISMRM 2019

Emphysema: Pathology

Evaluating Emphysema

- Spirometry and Plethysmography
- Computed Tomography
- Diffusion-Weighted (DW) Hyperpolarized Gas MRI

DW Hyperpolarized Gas MRI

Healthy

Emphysema

$$ADC = \frac{r^2}{2t}$$

ADC = apparent diffusion coefficient r = distance the helium atoms diffuse t =diffusion time

DW Hyperpolarized Gas MRI

¹Ouriadov A, et all, Magn Reson Med 2018; 79: 439-448.

Limitations to DW Hyperpolarized Gas MRI

A stretched exponential method³ (SEM) combined with under-sampling (compressed sensing) in the <u>imaging</u> and <u>diffusion directions</u>⁴ was proposed for the evaluation of hyperpolarized gas multiple bvalue diffusion-weighted MRI.

The major advantage of this method is the possibility to significantly speed up the data acquisition using acceleration factors (AF) between <u>7 and 10</u>.⁴

²Ouriadov A. et al. Magn Reson Med (2012)
³Chan H. F. et al. Magn Reson Med, (2016).
⁴Abascal J. F. A. et al. ArXiv, (2017)

Research Objective

To develop the accelerated SEM-based ¹²⁹Xe MRI approach and generate hyperpolarized gas MRIbased emphysema biomarkers in a small group of young healthy volunteers and Alpha-1 Antitrypsin Deficiency subjects.

Research Hypothesis

Accelerated (7 folds faster) methods can be developed to provide whole lung hyperpolarized gas MRI-based emphysema biomarkers including static-ventilation, T_2^* , ADC and morphometry maps in a single 16 sec breath-hold

Methods: MRI Protocol

3.0 T Discovery MR750 (GEHC)

	Hyperpolarized ¹²⁹ Xe MRI
Pulse Sequence Parameters	Accelerated 2D Gradient Echo DW <u>Short-TE/TE/TR/FA/BW =</u> <u>2ms</u> /10ms/5ms/4°/31.25kHz Matrix Size = 128x20, <u>Acceleration Factor = 7</u> Diffusion time (Δ) = 5.2ms <i>b</i> -values =0, 0, 12, 20, 30, 45.5 s/cm ² FOV =40x40cm ² , 8 slices, 30 mm slice thickness
Dose	
Coil	CMRS flexible transmit/receive chest coil

Methods: Image Analysis

Diffusion Attenuated MR Signal in SEM:

 $S(b) = S_0 \exp(-\boldsymbol{b} \cdot DDC)^{\alpha}$,

where DDC=diffusivity, α =heterogeneity index; and mean diffusion length (Lm_D)=(2 Δ <DDC>)^{1/2}

The SEM was extended^{4,5} to provide clinically-relevant biomarkers of emphysema, such as mean linear intercept $(L_m)^6$ for ¹²⁹Xe:

$$L_{m} = -562 \,\mu m + 4.3 \cdot Lm_{D}$$

$$D_0^{Xe} = 0.83 \text{ cm}^2/\text{s}^2$$

 $D_0^{Xe} = 0.22 \text{ cm}^2/\text{s}^2$
 $\Delta_{He} = 1.46 \text{ ms}$
 $\Delta_{Xe} = 5.2 \text{ ms}$

ve

⁴Ouriadov A. et al. Magn Reson Med (2017)
⁵COuriadov. et al. ISMRM, (2016).
⁶Yablonskiy D. A. et al. J Appl Physiol 107, 1258-1265, (2009).
⁷Kirby M. et al. Radiology 265, 600-610, (2012)

Methods: Pulse Sequence

K-space

Ouriadov A, et all, Submitted to Magn Reson Med

Ouriadov A, et all, Submitted to Magn Reson Med

Conclusions

- Accelerated ¹²⁹Xe MRI provides a way to generate alveolar morphometry estimates to regionally characterize emphysema and airspace enlargement in patients with AATD in a single 16 sec breath-hold scan
- The Signal-to-Noise Ratio (35-40) of the short-TE image was more than adequate for the calculation of the Ventilation Defect Percentage which may be simultaneously generated with T_2^* , ADC and L_m values in a single rapid breath hold
- This is the first in patient demonstration of this acceleration (7x) method for ¹²⁹Xe and it suggests that the acceleration factors of 10 fold are possible. It will help retain resolution, maintain high number of b-values

Ouriadov A, et all, ISMRM 2019

Translating ¹²⁹Xe MRI Across Canada

London ON: **Robarts Research Institute** Toronto ON: The Hospital for Sick Children Hamilton ON: Firestone Institute for Respiratory Health St. Joseph's Healthcare Thunder Bay ON: Thunder Bay Regional Research Institute Montreal QC: **CHU Sainte-Justine** Université de Montreal Vancouver BC: The Institute of Heart and Lung Health

St. Paul's Hospital

RESEARCH

Western Science

Physics & Astronomy