Accelerated Diffusion-Weighted Hyperpolarized 129Xe Gas Lung MRI

Fumin Guo1, Matthew Fox2,3, Grace Parraga4,5, and Alexei Ouriadov3,2

1Sunnybrook Research Institute, University of Toronto, Toronto, Canada,
2Lawson Health Research Institute, London, Canada,
3Department of Physics and Astronomy, 4Robarts Research Institute,
5Department of Medical Biophysics, Western University, London, Canada

June 4, 2019
Declaration of Relevant Financial Interests and/or Relationships

A. Ouriadov and all co-authors:
We have no relevant financial interests or relationships to disclose with regard to the subject matter of this presentation.
Thermal Polarization

- Nuclei with spin $= \frac{1}{2}$ are placed in an externally applied magnetic field.
- Polarization (P) arises from a population difference in energy levels of spin $= \frac{1}{2}$ nuclei.

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

$$E = +\frac{1}{2} \gamma \hbar B_0$$

$$E = -\frac{1}{2} \gamma \hbar B_0$$
Spin-Exchange Optical Pumping

- Rubidium electrons are optically pumped into an excited state using circularly polarized laser light.
- The electronic polarization of Rb is transferred to the noble gas nuclei via collisions.
Spin-Exchange Optical Pumping

129Xe Polarizer, Polarean, USA

Polarization: 30%

Cryogens required for operation

Production Rate: ~800ml/hour
1H MRI vs Hyperpolarized Gas MRI
Hyperpolarized Gas MRI

Helium-3

Xenon-129

129Xe MRI Hardware
Single Breath-hold Isotropic 129Xe MRI

Isotropic 129Xe MRI in a healthy volunteer provides sufficient SNR for reconstructed coronal and axial planes

Barker A, et al., ISMRM 2019
Emphysema: Pathology

Evaluating Emphysema

- Spirometry and Plethysmography
- Computed Tomography
- Diffusion-Weighted (DW) Hyperpolarized Gas MRI
DW Hyperpolarized Gas MRI

Healthy

Emphysema

$ADC = \frac{r^2}{2t}$

$ADC = \text{apparent diffusion coefficient}$

$r = \text{distance the helium atoms diffuse}$

$t = \text{diffusion time}$
$S(b) = S_0 \exp(-bADC)$

$b = 1.6 \text{ s/cm}^2$

A stretched exponential method\(^3\) (SEM) combined with under-sampling (compressed sensing) in the imaging and diffusion directions\(^4\) was proposed for the evaluation of hyperpolarized gas multiple b-value diffusion-weighted MRI.

The major advantage of this method is the possibility to significantly speed up the data acquisition using acceleration factors (AF) between 7 and 10.\(^4\)

Research Objective

To develop the accelerated SEM-based 129Xe MRI approach and generate hyperpolarized gas MRI-based emphysema biomarkers in a small group of young healthy volunteers and Alpha-1 Antitrypsin Deficiency subjects.

Research Hypothesis

Accelerated (7 folds faster) methods can be developed to provide whole lung hyperpolarized gas MRI-based emphysema biomarkers including static-ventilation, T_2^*, ADC and morphometry maps in a single 16 sec breath-hold.
Methods: MRI Protocol

3.0 T Discovery MR750 (GEHC)

<table>
<thead>
<tr>
<th>Pulse Sequence Parameters</th>
<th>Hyperpolarized 129Xe MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerated 2D Gradient Echo DW</td>
<td>Matrix Size = 128x20, Acceleration Factor = 7</td>
</tr>
<tr>
<td>Short-TE/TE/TR/FA/BW = 2ms/10ms/5ms/4°/31.25kHz</td>
<td>Diffusion time (Δ) = 5.2ms</td>
</tr>
<tr>
<td>b-values = 0, 0, 12, 20, 30, 45.5 s/cm2</td>
<td>FOV = 40x40cm2, 8 slices, 30 mm slice thickness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dose</th>
<th>CMRS flexible transmit/receive chest coil</th>
</tr>
</thead>
</table>

| Coil | CMRS flexible transmit/receive chest coil |
Methods: Image Analysis

Diffusion Attenuated MR Signal in SEM:

\[S(b) = S_0 \exp(-b \cdot DDC)^\alpha, \]

where DDC = diffusivity, \(\alpha \) = heterogeneity index; and mean diffusion length \((L_{mD}) = (2 \Delta <DDC>)^{1/2} \)

The SEM was extended\(^4,^5\) to provide clinically-relevant biomarkers of emphysema, such as mean linear intercept \((L_m) \)^6 for \(^{129}\)Xe:

\[L_m = -562 \mu m + 4.3 \cdot L_{mD} \cdot \sqrt{\frac{D_{0\text{He}}}{D_{0\text{Xe}}} \Delta_{\text{He}}}{\Delta_{\text{Xe}}} \]

\[D_{0\text{He}} = 0.83 \text{ cm}^2/\text{s}^7 \]
\[D_{0\text{Xe}} = 0.22 \text{ cm}^2/\text{s}^7 \]
\[\Delta_{\text{He}} = 1.46 \text{ ms} \]
\[\Delta_{\text{Xe}} = 5.2 \text{ ms} \]

\(^5\)COuriadov. et al. ISMRM, (2016).
Methods: Pulse Sequence

Time

TE=10ms

G_x

G_y

G_z

Pulse

Time

TE=2.0ms

b = 0
TE=2.0ms

b = 0

b = 12

b = 20
TE=10ms

b = 30

b = 45.5

Image

K-space
Results: Accelerated 129Xe MRI

Results: Accelerated 129Xe MRI

Conclusions

- Accelerated 129Xe MRI provides a way to generate alveolar morphometry estimates to regionally characterize emphysema and airspace enlargement in patients with AATD in a single 16 sec breath-hold scan.

- The Signal-to-Noise Ratio (35-40) of the short-TE image was more than adequate for the calculation of the Ventilation Defect Percentage which may be simultaneously generated with T_2^*, ADC and L_m values in a single rapid breath hold.

- This is the first in patient demonstration of this acceleration (7x) method for 129Xe and it suggests that the acceleration factors of 10 fold are possible. It will help retain resolution, maintain high number of b-values.

Ouriadov A, et all, ISMRM 2019
Translating 129Xe MRI Across Canada

London ON: Robarts Research Institute
Toronto ON: The Hospital for Sick Children
Hamilton ON: Firestone Institute for Respiratory Health
St. Joseph’s Healthcare
Thunder Bay ON: Thunder Bay Regional Research Institute
Montreal QC: CHU Sainte-Justine
Université de Montreal
Vancouver BC: The Institute of Heart and Lung Health
St. Paul’s Hospital