

Measurements of p+C differential cross-section at 20, 30, and 120 GeV/c in EMPHATIC

Matej Pavin, on behalf of the EMPHATIC collaboration

CAP Congress
June 6, 2019

What is EMPHATIC?

- Experiment to Measure the Production of Hadrons At a Testbeam In Chicagoland
- ~20 people
- Hadron production measurements for neutrino experiments (T2K, NOVA, HyperK, DUNE)
- Fermilab Test Beam Facility (FTBF)

Motivation

- Next generation of accelerator long-baseline neutrino experiments (HyperK, DUNE) will be limited by systematics
- HK-Canada group is trying to reduce all of the major systematics which will affect HyperK
- One of the major systematics is neutrino flux uncertainty
 - Dominant uncertainty in single detector measurements (neutrino-nucleus cross-section, sterile neutrino searches, ...)

Measurement of (anti) v_{\parallel} charged current inclusive cross-sections in T2K ND

	Statistics [%]	Flux [%]	Cross-section model [%]	Detector [%]
σ(ν)	0.87	9.14	1.16	2.63
σ(anti-v)	3.22	9.37	2.13	1.82
σ(anti-v)/σ(v)	3.22	3.58	1.56	1.11

Phys.Rev. D96 (2017) no.5, 052001

Neutrino beams in accelerator neutrino experiments

- T2K, NOvA, MINERvA, HK, DUNE
- Proton beam is directed toward a thick target
- Produced hadrons are (de)focused by a set of magnetic horns
- Neutrinos are produced from pion, kaon and muon decays
- Other particles are stopped in the beam dump

Accelerator

Neutrino flux uncertainty in T2K and HyperK

- MC models are used to simulate neutrino flux
- Hadron production measurements are used to constrain the models
- Particle production in p + C interaction at 30 GeV/c was measured by NA61/SHINE → current ν_μ flux uncertainty in T2K is around 5% at peak energies SK: Negative Focussing (v) Mode, ν_e
- Hadron interactions outside of the target contribute significantly to (anti-) v_e fluxes
 - \circ $\pi^{\pm} + AI \rightarrow \pi^{\pm} + X$ and $K^{\pm} + AI \rightarrow K^{\pm} + X$
 - o p < 15 GeV/c
 - No measurements which cover interactions of interest
 - v_e flux uncertainty can impact
 E61/IWCD/NuPrism measurements (see talk by John Walker)

EMPHATIC physics goals

- Measurement of untuned interactions in the T2K neutrino beam simulation
- Hadron production measurements for atmospheric neutrinos
- Measurements for Booster neutrino programme
- Low momentum meson interactions in NuMI
- Cross-check of the NA61/SHINE measurements
- Resolve inconsistencies between the data
- High momentum measurements for NuMI beam simulation

Beam test in January 2018 (Fermilab Test Beam Facility)

- Test of the FTBF capabilities (silicon strip tracking, gas Cherenkov detectors)
- Test of the aerogel threshold Cherenkov detectors
- Test of the particle tracking with emulsions
- Measurement of the forward proton scattering (coherent elastic and quasi-elastic)

p_b < 15 GeV/c

Targets and beam

- Graphite, aluminum, steel and empty targets
- Emulsion targets with graphite
- The same graphite is used in T2K
- Beam momentum: 2, 10, 20, 30, 120 GeV/c

Beam profiles

What can we do with the data?

- p + C @ 20, 30, 120 GeV/c data
- Measurement of forward scattering

Impact of the current results

- Quasi-elastic cross-section measurements can significantly impact the flux uncertainty in NOvA
- Assuming 10% uncertainty on proton-nucleus quasi-elastic interactions

15

Future measurements and upgrades

- Measurements of particle production and interaction probability (total cross-section, elastic, inelastic, ...)
- p, π, K + C, Al, Fe, @ 4, 8, 12, 20, 31,
 60, 120 GeV/c
- 5, 10 and 20% λ₁ C targets
- Additional targets B, BN, B₂O₃ for atmospheric neutrinos
- We need momentum measurement and PID

Threshold aerogel detector

- Beam PID at lower momenta not possible with gas Cherenkov detectors
- Aerogel threshold Cherenkov
- Beam test

o
$$n = 1.004 \Rightarrow N_{p.e.} = 5.7$$
 (detection efficiency > 99%)

$$\circ$$
 n = 1.012 \Rightarrow N_{p.e.} = 16.8

$$\circ$$
 n = 1.045 \Rightarrow N_{p.e.} = 41.0

n	π threshold [GeV/c]	K threshold [GeV/c]	p threshold [GeV/c]
1.004	1.6	5.5	10.5
1.012	0.9	3.2	6.0

Aerogel RICH

- Based on Belle II RICH detector
- Advances in aerogel production (Chiba U.)
- Beam test at TRIUMF in August
- 2σ π/K separation < 7 GeV/c
- $1\sigma \pi/K$ separation < 10 GeV/c

Particle Separations, Centered Beam

Particle tracking

- Large silicon strip detectors for tracking
- Compact NdFeB Halbach array → small NdFe segments are stacked to mimic the field inside a strong dipole magnet
- Current magnet design: Ø 30 cm ⊗ 15 cm (~100 kg), 350 mrad coverage
- Whole tracking region is only 40 cm long
- Momentum resolution 4% 10% for p < 20

GeV/c

10

p [GeV/c]

15

20

0.025

 0.000^{-1}

Multislice: Magnetic flux density norm (T) Arrow Volume: Magnetic flux density

Conclusions

- Neutrino flux is the dominant uncertainty in single detector neutrino measurement
- Significant fraction of hadron interactions below 15 GeV/c are unconstrained → we rely on models → large systematic uncertainties (> 10%)
- EMPHATIC is a table-top hadron production experiment at FTBF
- Main physics goal is to measure hadron interaction below 15 GeV/c
- Preliminary beam test was done in 2018
 - Test of the FTBF capabilities
- We were able to measure forward p+C scattering
- The results can already have significant impact on the NOVA systematics
- Future runs and upgrades are planned

BACKUP

Hadron production measurements

Both approaches are necessary to completely constrain neutrino flux!

Thin vs. replica target tuning

- T2K neutrino flux simulation with the NA61/SHINE replica target tuning predicts
 5% lower flux
- Differences between thin vs. replica tuning were also observed when MIPP data was used at Fermilab
- Problems with interaction probability?

Uncertainty is dominated by differences between production cross-section measurements.

CP violation in atmospheric neutrino oscillations

- Small effect (~2%) in sub-GeV neutrino sample
- The uncertainty is dominated by hadron production below 15 GeV (π^+/π^- ratio)
- Only HARP data covers the important region

Differential cross-section measurement

- No PID or momentum measurement → contamination from secondary particles and production events
- $p + C \rightarrow p + X$, $K + C \rightarrow K + X$
- p or K are leading hadrons (highest momentum particle)
 - This definition minimizes MC corrections

Monte Carlo simulation

- Geant4.10.03.p02 simulation of the EMPHATIC setup
 - FTFP_BERT
 - QGSP_BERT
- FLUKA 2011.2x
- Beam profile and divergence distributions from the data are used to generate beam particles
- Simulation includes silicon strip planes, pixel planes, trigger scintillator, and the target
- Good agreement between angular resolution in the data and Monte Carlo (<4%)

 σ (data) = 0.207 mrad σ (MC) = 0.209 mrad

Upstream selection

- Gas Cherenkov selection
- Single upstream track
- Maximum number of clusters
- Upstream track $\chi^2 < 6$
- Beam divergence cut (remove SSD interactions)

Beam profile cut

Remove upstream interactions

Upstream selection

- Gas Cherenkov selection
- Single upstream track
- Maximum number of clusters
- Upstream track $\chi^2 < 6$
- Beam divergence cut (remove SSD interactions)

Remove upstream interactions

Upstream selection

- Gas Cherenkov selection
- Single upstream track
- Maximum number of clusters
- Upstream track $\chi^2 < 6$
- Beam divergence cut (remove SSD interactions)

Remove upstream interactions

Downstream selection

- Single downstream track
- Maximum number of clusters (6)
- Downstream track $\chi^2 < 4$
- δx and δy cuts → difference in upstream and downstream x(y) track position at target z position

Interactions in the pixel detector

Pixel interactions

- Selected pixel interactions → shape correction only in forward bins
- Lost particles on target → normalization correction

	p+C @ 20 GeV/c	p+C @ 30 GeV/c	p+C @ 120 GeV/c	K+C @ 30 GeV/c
POT correction [%]	5.2	4.5	4.3	2.9

Efficiency

$$\epsilon_i = \frac{N_i^{\mathrm{MC \ true, \ down. \ sel.}}}{N_i^{\mathrm{MC \ true}}}$$

Secondary particles

- Secondary hadrons produced in the target and reconstructed in downstream layers
 - o pions, kaons, and non-leading protons in p+C
 - o pions, protons, and non-leading kaons in K+C

Systematic uncertainties

Strategy:

- Use data to estimate systematics
- If not possible use MC → largest difference between models

- 1. Beam contamination (kaons in proton beam) → negligible << 1% contamination
- 2. Upstream interactions in the trigger scintillator or SSDs → negligible < 0.5%
- 3. Pixel interactions (shape) → only forward bins negligible above t=0.01 GeV²
- 4. Secondary particles (not leading protons or kaons) <6%
- 5. Efficiency uncertainty (model dependance) <3%
- 6. Normalization (target thickness and density + pixel POT correction)
 - a. Dominated by density uncertainty (2%) + pixel normalization uncertainty (0.5%)

Bellettini et al.

- Angular coverage 1.5 20 mrad
- Momentum measurement →
 contamination of inelastic events
 1%
- Uncertainties are not known

EMPHATIC and Bellettini do not measure the same thing!

 EMPHATIC includes resonance production