EMPHAT C detector development

Blair Jamieson <bl.jamieson@uwinnipeg.ca> for the EMPHATIC collaboration

Experiment to Measure Proton Hadron Production in A Testbeam In Chicagoland Collaboration

EMPHAT C

T. Akaishi¹⁰, L. Aliaga-Soplin², H. Asano¹¹, L. Bellantoni², W-C. Chang¹², L. Fields², T. Fukuda⁵, D. Harris², M. Hartz^{1,4}, R. Honda¹³, T. Ishikawa¹⁴, B. Jamieson⁷, M. Komatsu⁵, Y. Komatsu¹⁵, A. Konaka¹, T. Lindner^{1,7}, Y. Ma¹¹, N. Naganawa⁵, M. Naruki¹⁶, H. Noumi⁹, K. Ozawa¹⁵, J. Paley², F. Sakuma¹¹, T. Sawada¹⁷, O. Sato⁵, T. Sekiguchi³, K. Shirotori⁹, A. Suzuki¹⁸, M. Tabata⁸, T. Takahashi⁹, N. Tomida⁹, R. Wendell⁶, and T. Yamaga¹¹

¹²Institute of Physics, Academia Sinica ¹³Physics Department, Tohoku University ¹⁴Research Center for Electron Photon Science (ELPH), Tohoku University

Accelerator Research Organization (KEK) ¹⁶Kyoto University, Yoshidahonmachi, Kyoto, Kyoto 606-8501, Japan ¹⁷Department of Physics, Osaka City University ¹⁸Kobe University, Kobe, Hyogo 657-8501, Japan

¹⁵Institute of Particle and Nuclear Studies (IPNS), High Energy

Motivation: next generation long-baseline search for CP violation in neutrinos will be systematics limited

Japan Proton Accelerator Research Complex

3 Accelerators
3(+ 1) User facilities

International User Facility

Materials & Life Facility
neutron • muon

Neutrinofacility

Neutrinofacility

30 GeV synchrotron
MR(0.75 MW)

260 kton Water
Cherenkov Detector

H = 60 m

 $\phi = 74 \text{ m}$

40,000 50 cm PMTs (40% photo-coverage) High QE box and line

Upgrade J-PARC neutrino beam to 1.3 MW beam power

New/upgraded near detectors

Systematic Uncertainties in HK Era

Reaching 5 σ C.L. for maximal CP will require improved systematic uncertainty estimates

Will require improved understanding of:

- Hadron-production distributions
- v cross-section
- Detection efficiencies

Neutrino beam flux uncertainties

- Large contribution from hadron production uncertainty
- Also from pion and kaon re-scattering in target and in magnetic focusing horns

6/4/19

EMPHATIC experiment

- Reduce neutrino flux prediction uncertainties in long-baseline neutrino oscillation
- Compact spectrometer to measure hadron production uncertainties
- Reduce flux uncertainties by factor of two
- Detector development : this poster!

- Fall 2018 results coming soon:
 - Session R2-10 Thu 13:40 Matej Pavin "Measurements of protoncabon differential cross-sections at 20, 30 and 120 GeV/v in EMPHATIC experiment"

Preliminary results

EMPHATIC Spectrometer

- Poster will discuss
 - design of permanent magnet
 - Design of aerogel RICH

6/4/19

Thanks for your attention!

• Questions? Come see poster number 62 this evening.

