EMPHATiC detector development
Blair Jamieson <bl.jamieson@uwinipeg.ca>
for the EMPHATIC collaboration

Outline

• EMPHATIC?
• Physics motivation
• Neutrino flux prediction
• Detector development
• Outlook
Experiment to Measure Proton Hadron Production in A Testbeam In Chicagoland Collaboration

T. Akaishi10, L. Aliaga-Soplin2, H. Asano11, L. Bellantoni2, W-C. Chang12, L. Fields2, T. Fukuda5, D. Harris2, M. Hartz1,4, R. Honda13, T. Ishikawa14, B. Jamieson7, M. Komatsu5, Y. Komatsu15, A. Konaka1, T. Lindner1,7, Y. Ma11, N. Naganawa5, M. Naruki16, H. Noumi9, K. Ozawa15, J. Paley2, F. Sakuma11, T. Sawada17, O. Sato5, T. Sekiguchi3, K. Shirotori9, A. Suzuki18, M. Tabata8, T. Takahashi9, N. Tomida9, R. Wendell6, and T. Yamaga11

1TRIUMF, Vancouver, BC V6T 2A3, Canada
2Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
3KEK, Tsukuba, Ibaraki 305-0801, Japan
4IPMU, Kashiwa, Chiba 277-8583, Japan
5Nagoya University, Nagoya, Aichi 464-8601, Japan
6Kyoto University, Yoshidahonmachi, Kyoto, Kyoto 606-8501, Japan
7University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
8Chiba University, Chiba, Chiba 263-8522, Japan
9Research Center for Nuclear Physics (RCNP), Osaka University
10Department of Physics, Osaka University
11RIKEN
12Institute of Physics, Academia Sinica
13Physics Department, Tohoku University
14Research Center for Electron Photon Science (ELPH), Tohoku University
15Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)
16Kyoto University, Yoshidahonmachi, Kyoto, Kyoto 606-8501, Japan
17Department of Physics, Osaka City University
18Kobe University, Kobe, Hyogo 657-8501, Japan
Motivation: next generation long-baseline search for CP violation in neutrinos will be systematics limited

260 kton Water Cherenkov Detector
H = 60 m
φ = 74 m
40,000 50 cm PMTs (40% photo-coverage)
High QE box and line

Upgrade J-PARC neutrino beam to 1.3 MW beam power
New/upgraded near detectors
Systematic Uncertainties in HK Era

- Reaching 5σ C.L. for maximal CP will require improved systematic uncertainty estimates
- Will require improved understanding of:
 - Hadron-production distributions
 - ν cross-section
 - Detection efficiencies
Neutrino beam flux uncertainties

- Large contribution from hadron production uncertainty
- Also from pion and kaon re-scattering in target and in magnetic focusing horns
EMPHATIC experiment

- Reduce neutrino flux prediction uncertainties in long-baseline neutrino oscillation
- Compact spectrometer to measure hadron production uncertainties
- Reduce flux uncertainties by factor of two
- Detector development: this poster!

Fall 2018 results coming soon:
- Session R2-10 Thu 13:40 Matej Pavin “Measurements of proton-carbon differential cross-sections at 20, 30 and 120 GeV/ν in EMPHATIC experiment”

Preliminary results
EMPHATIC Spectrometer

• Poster will discuss
 • design of permanent magnet
 • Design of aerogel RICH
Thanks for your attention!

• Questions? Come see poster number 62 this evening.