

The Neutrino Floor for the Next Generation of Noble Liquid Dark Matter Detectors

Andréa Gaspert Pietro Giampa and David Morrissey

OUTLINE

- Demystifying the neutrino floor
- The next generation of noble liquid DM detectors
- A more realistic neutrino floor
- The impact of GAIA DR2

- Many experiments looking for scattering of a DM particle off of a nuclei on Earth
- Noble liquid detector technology has been leading the field
- As detectors becoming bigger and taking more data, also becoming sensitive to neutrinos!

- Many experiments looking for scattering of a DM particle off of a nuclei on Earth
- Noble liquid detector technology has been leading the field
- As detectors becoming bigger and taking more data, also becoming sensitive to neutrinos!
- Neutrino floor defined as a limit below which the neutrino events dominate over the dark matter signal in a detector
- Computed through a profile likelihood ratio test

Demystifying the *v*-floor

 Profile over different nuisance parameters and sources of uncertainties (neutrino fluxes, dark matter velocity and density distributions)

Param.	Canonical Value	Value Used (updated)
V _{esc} (km/s)	544 ± 70	528 ± 25
V ₀ (km/s)	220 ± 30	233 ± 5
ρ _{DM} (GeV/cm³)	0.3 ± 0.1	0.5 ± 0.2

- Canonical neutrino floor computed for an ideal Xenon TPC with a 3 eV threshold
- Does not take neutrino-induced electron scattering into account

- Canonical neutrino floor computed for an ideal Xenon TPC with a 3 eV threshold
- Does not take neutrino-induced electron scattering into account

- 1. Compute accurate neutrino floors for realistic future noble liquid dark matter detectors
- 2. Evaluate how new information on the distribution of DM in our galaxy might affect predictions

The Next Generation of Noble Liquid DM Detectors

- Focussed on the comparison between Argon single-phase and Xenon dual-phase detectors
- Included neutrino-induced electron recoils

The Next Generation of Noble Liquid DM Detectors

- Focussed on the comparison between Argon single-phase and Xenon dual-phase detectors
- Included neutrino-induced electron recoils
- Argon floor slightly lower for higher DM masses for these detector properties
- Mostly due to higher ER-rejection efficiency

^{1.} J. Aalbers and al., arXiv:1606.07001 (2016) 2. C.E. Aalseth and al., arXiv:1707.08145 (2017)

CAP - PPD Poster Slam

04/06/2019

The impact of Gaia DR2

- Velocity distribution of stars in the MW bulk is significantly anisotropic
- Velocity Distribution of DM in Milky Way can be separated in two components:
 - Old pre-collision stars with SHM distribution
 - Newer stars from collision with anisotropic velocity distribution
- Two parameters:
 - o fraction of dark matter in anisotropic "sausage" η
 - Anisotropy of "sausage" β

The impact of Gaia DR2

- We computed the neutrino floor while also profiling over values of η and β
- Mostly affects low DM-mass portion of the floor

 $0.8 < \beta < 0.98$

 $0.1 < \eta < 0.8$

Conclusions

- Argon-based detectors have a lower neutrino floor at higher WIMP masses, when including neutrino-induced electron recoils and considering detector properties.
- Although the potential anisotropy of the dark matter velocity distribution has only a small impact on the neutrino floor, this impact is most important for lower dark matter masses.
- The neutrino floor can still be pushed down:
 - Better measurements of the neutrino fluxes
 - directional DM detection
 - 0

Thank you! Merci!