
Nucleation is the process by which a bulk metastable phase undergoes a phase transition to a 
stable phase via the formation of a local fluctuation (the critical nucleus) of sufficient size to be able to 
grow spontaneously to macroscopic scale.  In the case of ``two-step nucleation" (TSN), the first step 
in the phase transformation process consists of the appearance in the bulk metastable phase of a 
local fluctuation that resembles an intermediate phase distinct from the stable phase.  In the second 
step of TSN, this intermediate fluctuation undergoes a transition in which the stable phase emerges 
from within the intermediate phase.  Evidence for TSN has been observed experimentally in a wide 
range of molecular and colloidal systems, including important cases relevant to understanding 
protein crystallization and biomineralization.  In a recent work, the free energy surface (FES) 
describing TSN as it occurs in a simple 2D model of a metamagnet was evaluated [1].  This FES 
shows that at a well-defined size for the growing nucleus, the stable phase becomes more stable 
than the intermediate phase, providing a thermodynamic prediction for the nucleus size at which the 
second step of TSN begins.  Here we identify conditions at which the spontaneous transition within 
the nucleus occurs at much larger size than predicted by thermodynamics, demonstrating that the 
system dynamics can have a dramatic impact on how TSN is observed in practice. 

[1] D. James, S. Beairsto, C. Hartt, O. Zavalov, I. Saika-Voivod, R.K. Bowles and P.H. Poole,  
J. Chem. Phys. 150, 074501 (2019).
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Free energy of a fluctuation in classical nucleation theory
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FIG. 3. H = 3.981, Hs = 0.01, and L = 200. See open circles in Fig. ??.

ues of H and Hs. There are two ferromagnetic phases
denoted U (all si = 1) and Ū (all si = �1); and two
antiferromagnetic “checkerboard” phases denoted C (all
si = �i) and C̄ (all si = ��i). Since the topology of the
phase diagram is unchanged when H ! �H, we only
consider H � 0 here. All our simulations are carried out
at temperature T such that J/� = 1, where � = 1/kT
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FIG. 4. GAB (blue) and GAC (red) versus n in various ther-
modynamic regimes. To plot these curves we scale energies
by " = |�µAC | and surface tensions by "v

�1/d. In all panels
�AC = 2�AB = 2"v�1/d. In the righthand panels �µAC = "

and in the lefthand panels �µAC = �". From top to bottom,
�µAB increases: (a) �µAB = �"/2; (b) �µAB = �3"/2;
(c) �µAB = "/2; (d) �µAB = �"/2; (e) �µAB = 2"; (f)
�µAB = "/2. To indicate the relative stability of the three
bulk phases in each panel, the phases are listed vertically ac-
cording to their value of µ, with µ increasing from bottom to
top in each list.
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FIG. 5. Phase diagram for kT/J = 1. Solid lines are coex-
istence lines. The dashed lines are metastable extensions of
coexistence lines calculated using Eq. 14. The dot-dashed line
is the limit of metastability of the U phase for a system of size
L = 64.

and k is Boltzmann’s constant. This is well below the T

for the Néel transition (kT/J = 3.802) and the tricritical
point (kT/J = 1.205) [4]. Thus the phase diagram in
the plane of H and Hs at fixed T contains only first-
order phase transitions, arranged as three coexistence
lines meeting at a triple point located at Hs = 0 and
H = 3.9876 (see SM), as shown in Fig. 4.
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• Consider a bulk phase A in which fluctuations
correspond to another bulk phase B.

• CNT expressions (d = 2) for free energy to
form a B fluctuation of size n:

GAB = n1/2 ��AB + n�µAB

• �AB is AB surface tension, � is shape factor.

• �µAB = µB � µA is chemical potential
di↵erence between bulk B and A phases.

A B

µB < µA

bulk term
n�µAB

surface term
n1/2 ��AB

A
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Figure 1 | 5⇤⇤⇤!44 two-step nucleation in a crystal with two vacancies in an H =3µm sample at 27.2�C. a, Steady temperature profile in the xy-plane.
The contour spacing is 0.2 �C. The temperature di�erence in the ⇡(38µm)2 area of the central circle is less than 0.2 �C. The green dashed rectangle is the
full field of view. The red square is the area shown in b–g. b–g, Spatiotemporal evolution of the central region of the crystal during the s–s transition. The
colours represent di�erent values of the Lindemann parameter for each particle measured during a 4 s time period (Supplementary Fig. 3). Liquid-like
particles in red are defined as particles with low bond-orientational orders and large Lindemann parameters >0.2 (Supplementary Information). Scale
bars, 5 µm. See also Supplementary Movie 2. b, At t=0 s, the heating light was switched on. The temperature increased and stabilized in 3 s. Two vacancies
are labelled by circles. c, At t=2,100 s, particles labelled with white dots are swapping positions with their neighbours, although the overall lattice structure
remains intact. d, At t=2,400 s, a liquid nucleus has begun to form near one of the vacancies—that is, a vacancy surrounded by particles that are swapping
positions—even though the sample state (and temperature) is below the melting point. e, By t=2,830 s, the liquid nucleus has grown larger. f, At
t=3,040 s, a 4-lattice nucleus has developed within a liquid nucleus that exceeds the critical size. g, By t=3,400 s, the 4-lattice nucleus has grown larger,
well beyond its critical size.

confined between two glass walls. Such samples are well known to
exhibit a cascade of crystalline phases as a function of increasingwall
separationH : 14, 2⇤, 24, 3⇤, 34, . . . (refs 26–28). Here 14 denotes
amonolayer triangular lattice; 2⇤ denotes a two-layer square lattice,
and so on. Similar structures have been found in plasmas29 and in
electron bilayers of semiconductors30. The equilibrium state of these
samples is controlled by two thermodynamic variables: the ratio of
wall separation to particle diameter, H/� , and the particle volume
fraction � (refs 27,28). When temperature is varied, � changes
and thus both H/� and � are varied concurrently to produce
n⇤!(n�1)4 transitions. If temperature is varied quasi-statically,
then such systems evolve along an angled trajectory in the phase
diagram (Supplementary Fig. 2B). Here, we varied temperature
suddenly to produce a superheated metastable ⇤-lattice, and then
monitored its evolution towards the equilibrium 4-lattice at a con-
stant temperature (that is, at constant H/� and �).

When the whole sample was heated, n⇤! (n�1)4 transitions
always occurred without nucleation; transitions began at the inter-
faces between n⇤ and (n�1)4 domains (Supplementary Movie 1).
Therefore, to prevent invasion from pre-existing (n�1)4 domains,
we devised a scheme whereby a beam of light passing through
the microscope objective lens locally heated the interior of an n⇤
crystalline domain with a typical size of 105 particles per layer18.
The heated area equilibrated to a temperature of Tamb + �T . The
ambient temperature, Tamb, was adjustable with 0.1 �C resolution
using temperature controllers on the microscope, and the optical
heating typically induced a local temperature change of �T =1.6 �C
near the centre of the illumination region (Fig. 1a). The temperature
attained its steady-state value ⇠3 s after the light was turned on
(Supplementary Fig. 1C; ref. 18). The s–s transition is achievedwhen
Tamb <Ts–s <Tamb + �T <Tm, where Ts–s and Tm correspond to the
s–s and melting (solid–liquid) transitions, respectively.

In our experiments, the incubation time before a nucleus forms
ranges from 5 to 60min, depending on the degree of superheating.

This incubation time is thus much larger than the temperature
equilibration time of 3 s. The temperature was set to be constant for
the entire duration of the incubation and nucleation processes, and
was measured to be very uniform in the central ⇡ (38 µm)2 area of
the xy-plane (Fig. 1a) and throughout the thickness (z direction)
of the thin films. This 76-µm-diameter region of interest is very
small compared to the 18⇥ 18mm2 sample cell size, and the wall
separation is very uniform (<0.03� ) in the region of interest. Most
of the nuclei studied were larger than H and had a uniform shape
in the z direction; thus we monitored only a fixed layer within
the thin film. In most experiments we monitored the surface layer,
wherein liquid-like particles are more clearly distinguished and
characterized. The particle motions were recorded with a charge-
coupled device (CCD) camera at 10 frames s�1. Particle positions
were tracked using standard image analysis31. Experimental details
are given in the Methods and Supplementary Information.

Two-step nucleation
Nucleation near vacancies (Fig. 1 and Supplementary Movie 2),
dislocations (Fig. 2 and Supplementary Movie 3) and a grain
boundary (Fig. 3 and Supplementary Movie 4) was measured
by choosing heating areas containing these particular defects.
All the superheated metastable crystals exhibited an interesting
two-step nucleation pathway: ⇤-lattice crystal ! post-critical
liquid nucleus !4-lattice nucleus (Figs 1–3). This behaviour was
robust across 50 independent experiments observed inside⇤-lattice
crystal domains and 6 independent experiments observed at grain
boundaries. The largest observed liquid area had ⇠740 particles
per layer (Supplementary Movie 5). Liquid-like particles swapped
positions in movies, indicating that they are indeed liquid. Note
that the intermediate liquid nucleus is in a metastable supercooled
state which is denser than the equilibrium liquid phase. In fact,
the metastable liquid, the superheated ⇤-lattice and the final
equilibrium 4-lattice have approximately the same number density
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Two-step nucleation mechanism in solid–solid
phase transitions
Yi Peng1, FengWang1, ZirenWang1, AhmedM. Alsayed2, Zexin Zhang3, Arjun G. Yodh4

and Yilong Han1,5*
The microscopic kinetics of ubiquitous solid–solid phase transitions remain poorly understood. Here, by using single-particle-
resolution video microscopy of colloidal films of diameter-tunable microspheres, we show that transitions between square and
triangular lattices occur via a two-step di�usive nucleation pathway involving liquid nuclei. The nucleation pathway is favoured
over the direct one-step nucleation because the energy of the solid/liquid interface is lower than that between solid phases.
We also observed that nucleation precursors are particle-swapping loops rather than newly generated structural defects, and
that coherent and incoherent facets of the evolving nuclei exhibit di�erent energies and growth rates that can markedly alter
the nucleation kinetics. Our findings suggest that an intermediate liquid should exist in the nucleation processes of solid–solid
transitions of most metals and alloys, and provide guidance for better control of the kinetics of the transition and for future
refinements of solid–solid transition theory.

Solid–solid (s–s) transitions between di�erent crystalline
structures are arguably the most numerous of nature’s
phase transitions. Among them are common transformations

exhibited by elemental crystals, alloys and minerals1, with broad
implications in earth science2, diamond and steel production3,4,
and the synthesis of ceramic materials4. However, despite their
considerable technological importance, the microscopic kinetics
of s–s transitions remain poorly understood. The mechanisms
that govern s–s phase transitions present substantial challenges
for theory, simulation and experiment. A central question about
the nature of s–s transitions, for example, concerns their kinetic
pathways; in particular, do these pathways follow a di�usionless
martensitic transformation with particles moving in concert1 or
a di�usive nucleation process? So far, s–s transitions in atomic
and molecular crystals have mainly been studied by means of
X-ray di�raction5 and electron microscopy6–8—techniques which
rarely reveal the initial stage of the s–s transition and the
dynamics at the single-particle level. Nevertheless, in experimental
studies of graphite–diamond6 and olivine–spinel systems7, di�usive
nucleation has been inferred to occur when anisotropic stresses
are negligible. Martensitic transformations have been observed in
simulations that use small systems9,10, strong superheating11 or
external anisotropic stresses12. These three conditions are typically
employed to speed up sluggish dynamics in simulations, and tend to
promote martensitic transformations and suppress the nucleation
mechanism6. Consequently, kinetic paths under isotropic stresses
remain controversial6. Finally, analytical theories are di�cult to
formulate and are not definitive because ofmissing group–subgroup
relations between the symmetries of parent and product crystals13.

Stimulated by these open questions and technical di�culties,
our experiments sought to observe nucleation processes in the s–s
transitions of colloidal crystals with single-particle resolution. This
class of model thermodynamic system, composed of micrometre-
sized colloidal particles whose thermal motions can be directly
visualized by video microscopy, has already provided many general

insights about phase transitions14, including the dynamics of
crystallization15,16, melting17,18, sublimation19, glass formation20 and
jamming transitions21. Few such studies, however, have probed
s–s transitions, and those that did focused on structure rather
than kinetics22–25, and the surfaces or grain boundaries of small-
sized crystals23,25 and/or external anisotropic fields22 suppressed
nucleation. In our experiment, the high-quality large crystalline
domains and the local heating technique enable us to study
nearly homogeneous nucleation and heterogeneous nucleation at a
desired type of defect. We discover a surprising two-step nucleation
behaviour during the transformation between square (⇤) and
triangular (4) lattices, with an intermediate liquid stage that might
be expected to occur in crystals with constituents at any length scale,
provided that solid–liquid interfacial energies are su�ciently small.
Furthermore, the single-particle experimental resolution enabled us
to directly identify liquid nucleation precursors, which arise from
particle-swapping loops rather than from defects, and to study the
facets of evolving nuclei, whose energetics and growth rates exhibit
rich phenomenology.

Experiment
Temperature-sensitive poly(N -isopropylacrylamide) (NIPA) mi-
crogel colloidal spheres17 were employed to make the volume-
fraction-tunable systems needed for these studies. The NIPA sphere
e�ective diameter, � , changes linearly from 0.76 µm at 26.4 �C to
0.67µmat 30.6 �C inwater (Supplementary Fig. 1). The spheres have
short-range repulsive interactions (Supplementary Fig. 1A) and
exhibit almost the same phase behaviour as hard spheres17,18. The
refractive index of the NIPA spheres is very close to that of water be-
cause watermakes upmore than 90%of themicrogel. Consequently,
reasonably clear images of the bulk crystalline layers can be obtained
even using bright-field microscopy17. They form face-centred cubic
(fcc) crystals in three dimensions (3D) and triangular lattices in
two dimensions (2D). To obtain the multiple crystalline phases
needed to probe the s–s transition, the colloidal spheres were
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(COMPASS), Solvay-CNRS-UPenn UMI 3254, Bristol, Pennsylvania 19007, USA, 3Center for Soft Condensed Matter Physics and Interdisciplinary
Research, Soochow University, Suzhou 215006, China, 4Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania
19104, USA, 5HKUST Shenzhen Research Institute, Shenzhen 518057, China. *e-mail: yilong@ust.hk
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To distinguish between fluidlike and solidlike particles
with square (□) and triangular (△) symmetries,
we calculate the bond orientational order ψmj ¼PNbðjÞ

k¼1 exp ðimθkÞ=NbðjÞ of each particle j with m ¼
4; 6 for solidlike particles with four- and sixfold sym-
metries, where θj is the angle between the bond of particles
i and j with an arbitrary reference axis, and NbðjÞ denotes
the number of nearest neighbors of particle j [34]. We
divide the system into five and four layers for the
calculation of ψ4 and ψ6, respectively. In addition, a
crystalline bond with m-fold symmetry is defined if jψ $

mi ·
ψmjj > 0.5 [26]. We define particles as △-solid-like if the
number of crystalline bonds with triangular symmetry
ξ
△

≥ 3, and as □-solid-like if the number of crystalline
bonds with square symmetry ξ

□

≥ 2. All other particles are
defined as liquidlike. The criteria guarantee that no particle
is both□-solid-like and△-solid-like. Liquid- and△-solid-
like particles are considered to belong to the same cluster
if the distance between any two particles is less than 1.5σ.
We perform Monte Carlo (MC) simulations using the

umbrella sampling technique in the isothermal-isobaric
(NPT) ensemble, with the number of particles
N ¼ 2000, the reduced 2D lateral pressure P$ ¼ 40, and
the temperature T fixed. Figure 1(a)–1(c) show typical
configurations along the nucleation pathway in MC sim-
ulations. Nucleation studies usually focus on a one-
dimensional free-energy barrier using the total cluster size,
Ncl, as the reaction coordinate. Hence, we calculate the free
energy, βΔGðNclÞ ¼ − logPðNclÞ, where PðNclÞ is the
probability of observing a cluster of size Ncl ¼ NL þ N

△

.

We use two different biasing potentials: WðNclÞ ¼
1
2 kðNcl − Ncl0Þ2 and WðNLÞ ¼ 1

2 kðNL − NL0Þ2. The first
biasing potential is designed to follow the growth of a
binary cluster and the second the possible nucleation of a
liquid cluster, but we stress that the potential does not
prevent the growth of △-solid-like particles. Ncl0 and NL0
are the umbrella window centers for the total cluster size
and the number of liquid particles in the cluster, respec-
tively. The sampling is performed using 60 umbrella
centers, equally spaced in the region Ncl; NL ∈ ½0; 300'.
For each umbrella window, the data are harvested from
10000 equilibrium configurations and averaged over ten
independent runs. The free energies from each umbrella
window are combined into a single curve using the
multistage Bennet acceptance ratio method [35].
Figure 2 shows that the two biasing schemes give similar

free energies for cluster sizes up to ∼100, where the cluster
consists solely of liquidlike particles [Figs. 1(a) and 1(b)].
At larger cluster sizes, the two free-energy curves begin to
diverge with the emergence of △-solid-like particles in the
Ncl biasing scheme but not in the NL biasing scheme,
which suggests a degree of hysteresis. If both schemes were
fully equilibrated, we would expect them to yield similar
free energies, but the newly emerged △-solid particles are
not easily sampled when the NL biasing potential is
employed. N

△

increases rapidly for both biasing schemes
at the free-energy maximum, where N$

cl ∼ 175, but
Fig. 2(b) also shows that N

△

is already increasing, even
before the maximum under Ncl biasing.
More insight into the nucleation mechanism can be

obtained by calculating the two-dimensional free-energy

FIG. 1 (color online). Typical configurations of the solid-solid transition. Configurations obtained by umbrella sampling in MC
simulations with a bias towards cluster sizes of (a) Ncl ¼ 60, (b)Ncl ¼ 120, and (c) Ncl ¼ 180 particles. (d) A configuration obtained by
EDMD simulation at t ¼ 518τ for η ¼ 0.490. Side (e) and top (f) views of a liquid nucleus in an EDMD simulation. Side (g) and top
(h) views of a △-solid nucleus in an EDMD simulation. (i) A solid consisting of four △ layers arranged in both fcc and hcp structures
from EDMD simulations. In (a)–(d), multilayer particles are projected onto the xy plane. □-solid, △-solid and liquidlike particles are
colored in blue, green, and red, respectively. Particles not belonging to the largest cluster are drawn small.

PRL 115, 185701 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

30 OCTOBER 2015

185701-2

Nonclassical Nucleation in a Solid-Solid Transition of Confined Hard Spheres
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A solid-solid phase transition of colloidal hard spheres confined between two planar hard walls is studied
using a combination of molecular dynamics and Monte Carlo simulation. The transition from a solid
consisting of five crystalline layers with square symmetry (5□) to a solid consisting of four layers with
triangular symmetry (4△) is shown to occur through a nonclassical nucleation mechanism that involves
the initial formation of a precritical liquid cluster, within which the cluster of the stable 4△ phase grows.
Free-energy calculations show that the transition occurs in one step, crossing a single free-energy barrier,
and that the critical nucleus consists of a small 4△ solid cluster wetted by a metastable liquid. In addition,
the liquid cluster and the solid cluster are shown to grow at the planar hard walls. We also find that the
critical nucleus size increases with supersaturation, which is at odds with classical nucleation theory.
The△-solid-like cluster is shown to contain both face-centered-cubic and hexagonal-close-packed ordered
particles.

DOI: 10.1103/PhysRevLett.115.185701 PACS numbers: 64.70.K-, 64.60.qe, 82.60.Nh

The kinetics of phase transitions plays an important role
in condensed-matter physics and materials science. In order
to gain a better fundamental understanding of how to
control self-assembly processes in the fabrication of novel
structures, many experimental and simulation studies have
been devoted to colloidal systems. Experiments [1–4] and
computer simulations [5–7] on bulk hard-sphere colloids
suggested that the metastable fluid crystallizes and super-
heated crystals melt via a single-step nucleation process
that is well described by classical nucleation theory (CNT)
[8]. However, Ostwald’s step rule suggests that the kinetic
pathway to the most stable state can initially proceed
through the nucleation of intermediate, metastable phases
[9]. The effect of a nearby metastable state on nucleation
and the occurrence of multistep nucleation processes have
been studied in the crystallization of a range of systems
including colloids [10,11], proteins [12], and patchy
particles [13], and in the crystallization of molecular solids
from solution [14].
In contrast, the kinetic processes of solid-solid phase

transitions, which involve complex structural rearrangements
[15], have received considerably less attention [16].
Solid-solid transitions usually occur in a martensitic fashion
[17,18] involving the concerted, diffusionless motion of the
atoms in the unit cell. Anisotropic stress, rapid quenching,
and a small system size have been found to promote
martensitic transformations [19]. In colloids, martensitic
transitions have been observed in small crystalline clusters
[20–22] or lattices stretched by external fields [18,23–25].
A solid-solid transition involving an activated nucleation
process has recently been experimentally observed at the
single-particle level for the first time in colloidal thin-film

crystals confined between two glass plates [26]. The
equilibrium phase diagram of hard spheres confined between
two planar hard walls shows an alternating sequence of
solid-solid transitions, …n△ → ðnþ 1Þ□ → ðnþ 1Þ△…,
as the plate separation increases [27–30], where n is the
number of crystalline layers. Peng et al. [26] found that the
transition from the ðnþ 1Þ□ crystal to the ðnÞ△ crystal
followed Ostwald’s step rule and occurred via a two-step
nucleation process involving an intermediate liquid phase.
We study the nucleation mechanism of the 5□ → 4△

solid-solid transition in a system of hard spheres of
diameter σ confined between two parallel hard plates
separated by a distance H=σ ¼ 4, using computer simu-
lations. Our simulations are carried out in the packing
fraction range 0.479 < η < 0.500 (i.e., the 2D reduced
lateral pressure range 35.8 < P%¼ βPσ2 < 40), where the
5□ crystal and the liquid phase are metastable with respect
to the 4△ crystal (see the Supplemental Material [31] for
details). The free energy of the liquid phase lies between the
free energies of the two solid phases. β ¼ 1=ðkBTÞ denotes
the inverse temperature, with T being the temperature and
kB being the Boltzmann constant. In order to explore the
role a metastable liquid phase might play in this solid-solid
transition, we calculate the free energy of formation for a
cluster containing NL liquidlike particles and N

△

solidlike
particles with triangular symmetry. The resulting free-
energy surface shows that the optimal kinetic pathway
for the transition entails the initial growth of a liquid cluster,
within which the △-solid cluster forms, but there is only
one nucleation barrier involving a critical cluster consisting
of liquid- and solidlike particles in our parameter regime.
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B. Crystal nucleation within liquid droplets

The nucleation of the crystal phase inside a liquid drop-
let was simulated in the canonical ensemble. We performed
simulations to investigate how the size of the liquid droplet
affects the nucleation of the crystal phase. The nucleation
rates were obtained with the FFS11 technique, using the local
bond-order parameter18,19 discussed in Sec. II. Simulations
were performed on systems of size N=448, 612, 700, 850,
and 2028. The vast majority of particles formed part of the
liquid droplet with, on average, less than seven particles
forming the coexisting vapor. The vapor density, and hence
the vapor pressure does not noticeably change as the crystal
nucleates and grows inside the liquid droplet.

For all but the smallest system size with N=448, a stable
or metastable crystallite was nucleated. Nucleation occurs in
the core of the droplet and not at the surface like the freezing
of gold nanoclusters.20 In the LJ system close below its triple
point the crystal-vapor interface has a higher free energy cost
than the liquid-vapor interface and surface melting is
expected.24 This phenomenon can be seen in Fig. 2!c", a

snapshot of a crystallized cluster. Notice that a disordered
layer of approximately one particle thickness separates the
crystal and vapor phases. When we continue the simulations
after crystal nucleation is complete, we find that the particles
in this disordered layer diffuse around the surface of the
crystal cluster. Thus the monolayer is liquidlike.

In small droplets of 448 particles we find that all crys-
tallites that form are unstable and quickly melt. The absence
of a stable or metastable crystallites suggests that the crystal
phase for these small droplets is unstable due to the high free
energy cost of the liquid-crystal interface. For the droplets
that crystallized, the natural logarithms of the nucleation
rates are shown in Table III. The nucleation rate per droplet,
directly provided by our FFS simulations, is an extensive
property; we therefore expressed the rates per unit volume of
the liquid, too. The droplet volume is estimated by VD
#ND /!L, where ND are the number of particles in the drop-
let, and !L is the liquid density at coexistence.

Further analysis of our FFS data shows that the critical
cluster occurs within a range of cluster sizes from 180 to 200
particles. This range is the same for all system sizes consist-
ing of 700 to 2028 particles. A snapshot of a critical cluster is
shown in Fig. 2!b".

C. Crystallization in the grand-canonical ensemble

To test out calculations of the crystal nucleation rates in
the canonical ensemble, we also performed simulations in
the grand-canonical ensemble. Apart from the ensemble both
simulation methods were identical. As starting configurations
we used postcritical liquid droplets with N=600, N=800,
and N=1500 particles.

Figure 1 shows logarithmic nucleation rates for the
vapor-liquid and liquid-crystal against vapor pressure.
Nucleation inside the liquid droplet is not affected signifi-
cantly by the vapor pressure. The pressure inside the droplet
is approximated to be

Pdroplet = Pvapor + PLaplace, !2"

where

PLaplace =
2"lv

R
. !3"

Using the virial pressure tensor we computed that "lv=1.07.
Taking the droplet in Fig. 2!b" as an example, the radius is
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FIG. 1. !Color online" The logarithmic rate is plotted against the vapor
pressure for the vapor-to-liquid !filled squares" and liquid-to-crystal !unfilled
symbols" nucleation processes. The rates are expressed per unit volume of
the vapor and liquid phases, respectively. Results for initial droplet sizes of
600 !triangles", 800 !circles", and 1500 !squares" are shown. The line
through the filled symbols is a guide for the eye and errors are within the
size of the symbols.

a) b) c)

FIG. 2. !Color online" !a" Snapshot of a liquid cluster from a grand-
canonical simulation clearly showing its compact spherical shape. !b" A
critical crystal cluster from a canonical simulation containing 2028 particles.
Only the crystal particles are shown in this snapshot. This crystal cluster
contains 192 crystal particles. Snapshots of the critical cluster from simula-
tions containing 700 and 850 particles are indistinguishable from the cluster
shown here. !c" Cross section of a crystal cluster in a system size of 850
particles. Light particles are crystalline, dark are liquid. The crystal is coated
in a liquidlike layer. This layer is approximately one particle in thickness. In
snapshots !b" and !c" the crystal particles were characterized by bond-order
parameters as detailed in Sec. II.

TABLE III. For a liquid droplet embedded in a vapor, this table shows the
logarithmic rate for liquid-to-crystal nucleation and the critical cluster size
as a function of the number of particles ND in the liquid droplet. All simu-
lations were performed in the canonical ensemble. The rates are expressed
per droplet ln!kVD" and per unit volume ln!k", where VD#ND /!L is the
droplet volume. The unit of time is a Monte Carlo cycle. The critical cluster
results have an error of # 10.

No. of particles ND ln!kVD" ln!k" n *

448 ¯ ¯ ¯
612 −23.7# 1.5 −30.2# 1.5 180
700 −22.1# 1.0 −28.8# 1.0 190
850 −20.7# 1.0 −27.6# 2.0 180

2028 −21.1# 1.6 −28.8# 1.6 190

204505-4 van Meel et al. J. Chem. Phys. 129, 204505 !2008"
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Vapour-crystal nucleation via liquid intermediate

This mechanism was first suggested by simulations and

analytical theory.31–33 These theoretical efforts predicted that the

density and structure fluctuations are only separated near the

critical point for liquid–liquid (L–L) separation occurring in

model protein solution systems,31,34,35 while for off-critical

compositions, the fluctuations of the density and structure order

parameters occur synchronously,31 similarly to the classical

viewpoint.

The experiments discussed below demonstrate that nucleation

of crystals of the protein lysozyme, under a broad range of

conditions, proceeds in two steps: the formation of a droplet of

a dense liquid, followed by nucleating a periodic crystal within

the droplet,36–39 as schematically illustrated in Fig. 2. If the dense

liquid is stable with respect to the dilute solution, the nucleation

of crystals occurs inside macroscopic droplets of this phase. A far

more common case is when the dense liquid is not stable but has

a higher free energy than the dilute solution.28,29 In these cases,

the dense liquid is contained in metastable clusters, intriguing

objects in their own right, and crystal nucleation occurs within

the clusters.

After and concurrently with the evidence for the operability of

the two-step mechanism in the case of lysozyme crystallization,

additional experimental results demonstrated that this mecha-

nism applies to many other proteins, to small molecule organic

and inorganic compounds, including biominerals, and colloids.

Below, we discuss these and other issues related to the two-step

nucleation mechanism

Experimental data on the rate of nucleation of crystals

To understand the mechanism of nucleation of crystals in solu-

tion we turn to data on the dependence of the nucleation rate on

supersaturation for crystals of the protein lysozyme, a conve-

nient and often used model system. The dependencies of the

homogeneous nucleation rate of lysozyme crystals on the ther-

modynamic supersaturation s ^ Dm/kBT at three different

concentrations of the precipitant, NaCl, are presented in Fig. 3.

The data in Fig. 3 were obtained using the technique for direct

determination of the nucleation rates of proteins discussed in

Ref. 40,41, which allows distinction between homogenously and

heterogeneously nucleated crystals so that the data points in

Fig. 3 are homogenous nucleation rates. In support of the

conclusion that the rates plotted in Fig. 3 characterize homoge-

neous nucleation is the fact that they are lower by several orders

of magnitude than the those stemming from less careful

measurements which may have been contaminated by hetero-

geneous nucleation events.41–44
Fig. 2 Schematic illustration of the two-step mechanism of nucleation of

crystals. A dense liquid cluster forms. A crystal nucleus may form inside

the cluster. (a) Microscopic viewpoint in the (Concentration, Structure)

plane; (b) Macroscopic viewpoint of events along dashed line in (a). (c)

The free-energy DG along two possible pathways for nucleation of

crystals from solution. If dense liquid is unstable and DG0
L–L > 0 (DG0

L–L is

the standard free energy of formation of dense liquid phase), dense liquid

exists as mesoscopic clusters, DG0
L–L transforms to DG0

C, and upper curve

applies; if dense liquid is stable, DG0
L–L < 0, reflected by lower curve. DG*

1 is

the barrier for formation of a cluster of dense liquid, DG*
2 the barrier for

a structure fluctuation leading to an ordered cluster.

Fig. 3 The dependence of the rate of homogeneous nucleation J of

lysozyme crystals of supersaturation s ^ Dm/kBT at T ¼ 12.6 "C and at

the three concentrations of the precipitant NaCl indicated on the plots.

Solid lines—fits with exponential functions; dashed lines fits with the

classical nucleation theory expression, eqn (4). Vertical dotted lines at

s ¼ 3.9 indicate the liquid–liquid coexistence boundary at this T and

CNaCl ¼ 4%; this supersaturation corresponds to lysozyme concentration

67 mg ml# 1. (a) Linear coordinates; (b) semi-logarithmic coordinates.

With permission from Ref. 61.
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phase transition in a fluctuation simulation of fluctuations in a 2D lattice model
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FIG. 1. H = 3.981, Hs = 0.01, and L = 200. See open circles in Fig. ??.

the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.

Since ↵ < 1, the surface contribution always dominates
the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .

Let us assume that �AB < �AC , in which case B fluc-
tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.

We note that the above reasoning does not depend
on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.

In Fig. 2 we show schematically all possible relation-
ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.

III. SIMULATIONS

We conduct Monte Carlo (MC) simulations of a
2D Ising model, with nearest-neighbor (nn) and next-

nearest-neighbor (nnn) interactions, on a square lattice
of N sites with periodic boundary conditions. Each site
i is assigned an Ising spin si = ±1. The energy E of a

0 10 20
n

0

20

40

60

G
/ε

0 10 20
n

0

20

40

60

G
/ε

0 20 40 60 80
n

-10

0

10

G
/ε

0 20 40
n

0

10

G
/ε

0 10 20 30 40
n

0

10

20

G
/ε

0 20 40
n

0

10

G
/ε

(a)

A
C
B

C
A
B

C
B
A

B
C
A

A
B
C

B
A
C

(b)

(c) (d)

(e) (f)

FIG. 2. GAB (blue) and GAC (red) versus n in various ther-
modynamic regimes. To plot these curves we scale energies
by " = |�µAC | and surface tensions by "v

�1/d. In all panels
�AC = 2�AB = 2"v�1/d. In the righthand panels �µAC = "

and in the lefthand panels �µAC = �". From top to bottom,
�µAB increases: (a) �µAB = �"/2; (b) �µAB = �3"/2;
(c) �µAB = "/2; (d) �µAB = �"/2; (e) �µAB = 2"; (f)
�µAB = "/2. To indicate the relative stability of the three
bulk phases in each panel, the phases are listed vertically ac-
cording to their value of µ, with µ increasing from bottom to
top in each list.
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FIG. 1. H = 3.981, Hs = 0.01, and L = 200. See open circles in Fig. ??.

the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.

Since ↵ < 1, the surface contribution always dominates
the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .

Let us assume that �AB < �AC , in which case B fluc-
tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.

We note that the above reasoning does not depend
on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.

In Fig. 2 we show schematically all possible relation-
ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.

III. SIMULATIONS

We conduct Monte Carlo (MC) simulations of a
2D Ising model, with nearest-neighbor (nn) and next-

nearest-neighbor (nnn) interactions, on a square lattice
of N sites with periodic boundary conditions. Each site
i is assigned an Ising spin si = ±1. The energy E of a
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FIG. 2. GAB (blue) and GAC (red) versus n in various ther-
modynamic regimes. To plot these curves we scale energies
by " = |�µAC | and surface tensions by "v

�1/d. In all panels
�AC = 2�AB = 2"v�1/d. In the righthand panels �µAC = "

and in the lefthand panels �µAC = �". From top to bottom,
�µAB increases: (a) �µAB = �"/2; (b) �µAB = �3"/2;
(c) �µAB = "/2; (d) �µAB = �"/2; (e) �µAB = 2"; (f)
�µAB = "/2. To indicate the relative stability of the three
bulk phases in each panel, the phases are listed vertically ac-
cording to their value of µ, with µ increasing from bottom to
top in each list.

• GAB and GAC cross at n = nc

n1/2
c = �

�AC � �AB
�µAB ��µAC

if quotient is positive.

• Assume �AB < �AC :

• Then nc exists when �µAB > �µAC ,

• and B fluctuations always dominate at
small n.

• The most probable small fluctuation
corresponds to the phase with the lowest
surface tension.

• If the phase with the lowest � is not the
phase with the lowest µ, then the fluctuation
exhibits a phase transition at n = nc.

Russo, Romano, Tanaka, PRX (2018).

Free energy of a fluctuation in a three-phase system
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AB C

�AB < �AC

µB < µA < µC

• Consider a bulk phase A in which fluctuations
correspond to two other bulk phases B and C.

• CNT expressions (d = 2) for free energy to
form a B or C fluctuation of size n:

GAB = n1/2 ��AB + n�µAB

GAC = n1/2 ��AC + n�µAC

• �AC is AC surface tension.

• �µAC = µC � µA is chemical potential
di↵erence between bulk C and A phases.

2D lattice model - the metamagnet 3
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FIG. 3. Phase diagram for kT/J = 1. Solid lines are coex-
istence lines. The dashed lines are metastable extensions of
coexistence lines calculated using Eq. 14. The dot-dashed line
is the limit of metastability of the U phase for a system of size
L = 64.

microstate is given by,

E

J
=

X

hnni

sisj �
1

2

X

hnnni

sisj �H

NX

i=1

si �Hs

NX

i=1

�isi, (3)

where J is the magnitude of the nn interaction energy. In-
teractions between nn sites are antiferromagnetic, while
nnn interactions are ferromagnetic. The first (second)
sum in Eq. 4 is carried out over all distinct nn (nnn)
pairs of sites i and j. The third and fourth terms in Eq. 4
specify the influence of the direct magnetic field H and
the staggered field Hs. We define �i = (�1)xi+yi , where
xi and yi are integer horizontal and vertical coordinates
of site i, so that the sign of Hs�i alternates in a checker-
board fashion on the lattice. We sample configurations
using Metropolis single-spin-flip MC dynamics [1].

This model has been used previously to study metam-
agnetic systems exhibiting a tricritical point, for which it
provides a prototypical example in 2D [2–6]. At T = 0,
four stable phases are observed, depending on the val-
ues of H and Hs. There are two ferromagnetic phases
denoted U (all si = 1) and Ū (all si = �1); and two
antiferromagnetic “checkerboard” phases denoted C (all
si = �i) and C̄ (all si = ��i). Since the topology of the
phase diagram is unchanged when H ! �H, we only
consider H � 0 here. All our simulations are carried out
at temperature T such that J/� = 1, where � = 1/kT
and k is Boltzmann’s constant. This is well below the T

for the Néel transition (kT/J = 3.802) and the tricritical
point (kT/J = 1.205) [4]. Thus the phase diagram in
the plane of H and Hs at fixed T contains only first-
order phase transitions, arranged as three coexistence
lines meeting at a triple point located at Hs = 0 and
H = 3.9876 (see SM), as shown in Fig. 3.

Here we focus on the nucleation process by which the
bulk metastable A phase converts to C. We are therefore
interested in local fluctuations that occur within A, and
how they develop into a growing nucleus of C. Due to the
simplicity of our system, it is straightforward to identify
all such local fluctuations as clusters of size n that devi-
ate from the structure of A (see SM). All sites within a
given cluster can further be classified according to their
correspondence to either C or B. We thereby define the
C-like fraction of each cluster as f = nC/n, where nC is
the number of sites in the cluster that are classified as C.
Fig. 1 shows example clusters of various f , from mostly
B-like (f ' 0) to mostly C-like (f ' 1).
To quantify the nucleation pathway from A to C, we

measure G(nmax, f), the FES of the bulk A phase in
which the largest cluster in the system is of size nmax

and has composition f . We obtain the FES from um-
brella sampling MC simulations at fixed (N,Hs, H, T ), as
described in SM. Fig. 4 shows the FES at fixed Hs = 0.01
for three values of H within the stability field of C. The
free energy basin in the lower left corner of the FES cor-
responds to the metastable A phase, while the channel
in the upper right corner leads to the stable C phase.
Fig. 4 provides a clear example of the complex behavior

associated with TSN. To quantify the typical composition
of the nucleus as it grows, in Fig. 4 we also plot hfi, the
mean of f at fixed nmax (see SM). In all cases, the nucleus
undergoes a rapid change in hfi as nmax increases, from
an almost pure-B nucleus, to a composite nucleus with
a core of C wetted by a layer of B, as shown in Fig. 1.
We define the size at which this nucleus transition (NT)
occurs as nc, the value of nmax where hfi is steepest (see
SM). Distinct from the NT, there is also at least one
saddle point in the FES, corresponding to the transition
state where the system exits the metastable basin for
A. The 1D free energy barrier as a function of nmax

is defined as �G(nmax) = � log
R 1
0 exp[��G(nmax, f)] df ,

and is plotted in Fig. 5. We characterize the size of the
critical nucleus at the transition state as n⇤, the value of
nmax at the maximum of G(nmax) in Fig. 5.

Fig. 4 demonstrates the existence of two regimes of
TSN. In Fig. 4(a), nc < n

⇤: The NT occurs in the sub-
critical nucleus prior to the transition state, and the core
of the critical nucleus reflects the structure of the stable
C phase. In Fig. 4(c), nc > n

⇤: The critical nucleus cor-
responds to the B phase, and undergoes a NT to the C
phase well after the transition state. Fig. 4(b) shows the
FES when nc ' n

⇤, and is particularly complex. We ob-
serve two saddle points, with a broad, almost flat region
in between. In this case n⇤ is poorly defined, as indicated
by the broad maximum in G(nmax) in Fig. 5. These two
regimes were previously identified in Ref. [11], although
the NT for the nc > n

⇤ case was not directly observed
in their work. The possibility of two saddle points was
predicted in Ref. [12], but without explicitly connecting
this phenomenon to the two regimes found in Ref. [11].
Our results show that all of these cases are mutually con-
sistent and can occur within a common spectrum of be-

• Metamagnet Hamiltonian on a 2D square

lattice with nn and nnn interactions:

E

J
=

X

hnni

sisj�
1

2

X

hnnni

sisj�H

NX

i=1

si�Hs

NX

i=1

�isi

• Ising spins si = ±1

• Lattice variable �i = (�1)xi+yi defines a

reference checkerboard.

• Direct field H and staggered field Hs

• A is an antiferromagnetic phase with si ' ��i.

• B is a ferromagnetic phase with si ' 1.

• C is an antiferromagnetic phase with si ' �i.

• Fixed kT/J = 1.

• All phase transitions are first order.

• Lattice sizes up to L = 200.
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FIG. 1. H = 3.981, Hs = 0.01, and L = 200. See open circles in Fig. ??.

the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.

Since ↵ < 1, the surface contribution always dominates
the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .

Let us assume that �AB < �AC , in which case B fluc-
tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.

We note that the above reasoning does not depend
on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.

In Fig. 2 we show schematically all possible relation-
ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.

III. SIMULATIONS

We conduct Monte Carlo (MC) simulations of a
2D Ising model, with nearest-neighbor (nn) and next-

nearest-neighbor (nnn) interactions, on a square lattice
of N sites with periodic boundary conditions. Each site
i is assigned an Ising spin si = ±1. The energy E of a
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FIG. 2. GAB (blue) and GAC (red) versus n in various ther-
modynamic regimes. To plot these curves we scale energies
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the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.

Since ↵ < 1, the surface contribution always dominates
the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .

Let us assume that �AB < �AC , in which case B fluc-
tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.

We note that the above reasoning does not depend
on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.

In Fig. 2 we show schematically all possible relation-
ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.

III. SIMULATIONS

We conduct Monte Carlo (MC) simulations of a
2D Ising model, with nearest-neighbor (nn) and next-

nearest-neighbor (nnn) interactions, on a square lattice
of N sites with periodic boundary conditions. Each site
i is assigned an Ising spin si = ±1. The energy E of a
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where J is the magnitude of the nn interaction energy. In-
teractions between nn sites are antiferromagnetic, while
nnn interactions are ferromagnetic. The first (second)
sum in Eq. 4 is carried out over all distinct nn (nnn)
pairs of sites i and j. The third and fourth terms in Eq. 4
specify the influence of the direct magnetic field H and
the staggered field Hs. We define �i = (�1)xi+yi , where
xi and yi are integer horizontal and vertical coordinates
of site i, so that the sign of Hs�i alternates in a checker-
board fashion on the lattice. We sample configurations
using Metropolis single-spin-flip MC dynamics [1].

This model has been used previously to study metam-
agnetic systems exhibiting a tricritical point, for which it
provides a prototypical example in 2D [2–6]. At T = 0,
four stable phases are observed, depending on the val-
ues of H and Hs. There are two ferromagnetic phases
denoted U (all si = 1) and Ū (all si = �1); and two
antiferromagnetic “checkerboard” phases denoted C (all
si = �i) and C̄ (all si = ��i). Since the topology of the
phase diagram is unchanged when H ! �H, we only
consider H � 0 here. All our simulations are carried out
at temperature T such that J/� = 1, where � = 1/kT
and k is Boltzmann’s constant. This is well below the T

for the Néel transition (kT/J = 3.802) and the tricritical
point (kT/J = 1.205) [4]. Thus the phase diagram in
the plane of H and Hs at fixed T contains only first-
order phase transitions, arranged as three coexistence
lines meeting at a triple point located at Hs = 0 and
H = 3.9876 (see SM), as shown in Fig. 3.

Here we focus on the nucleation process by which the
bulk metastable A phase converts to C. We are therefore
interested in local fluctuations that occur within A, and
how they develop into a growing nucleus of C. Due to the
simplicity of our system, it is straightforward to identify
all such local fluctuations as clusters of size n that devi-
ate from the structure of A (see SM). All sites within a
given cluster can further be classified according to their
correspondence to either C or B. We thereby define the
C-like fraction of each cluster as f = nC/n, where nC is
the number of sites in the cluster that are classified as C.
Fig. 1 shows example clusters of various f , from mostly
B-like (f ' 0) to mostly C-like (f ' 1).
To quantify the nucleation pathway from A to C, we

measure G(nmax, f), the FES of the bulk A phase in
which the largest cluster in the system is of size nmax

and has composition f . We obtain the FES from um-
brella sampling MC simulations at fixed (N,Hs, H, T ), as
described in SM. Fig. 4 shows the FES at fixed Hs = 0.01
for three values of H within the stability field of C. The
free energy basin in the lower left corner of the FES cor-
responds to the metastable A phase, while the channel
in the upper right corner leads to the stable C phase.
Fig. 4 provides a clear example of the complex behavior

associated with TSN. To quantify the typical composition
of the nucleus as it grows, in Fig. 4 we also plot hfi, the
mean of f at fixed nmax (see SM). In all cases, the nucleus
undergoes a rapid change in hfi as nmax increases, from
an almost pure-B nucleus, to a composite nucleus with
a core of C wetted by a layer of B, as shown in Fig. 1.
We define the size at which this nucleus transition (NT)
occurs as nc, the value of nmax where hfi is steepest (see
SM). Distinct from the NT, there is also at least one
saddle point in the FES, corresponding to the transition
state where the system exits the metastable basin for
A. The 1D free energy barrier as a function of nmax

is defined as �G(nmax) = � log
R 1
0 exp[��G(nmax, f)] df ,

and is plotted in Fig. 5. We characterize the size of the
critical nucleus at the transition state as n⇤, the value of
nmax at the maximum of G(nmax) in Fig. 5.

Fig. 4 demonstrates the existence of two regimes of
TSN. In Fig. 4(a), nc < n

⇤: The NT occurs in the sub-
critical nucleus prior to the transition state, and the core
of the critical nucleus reflects the structure of the stable
C phase. In Fig. 4(c), nc > n

⇤: The critical nucleus cor-
responds to the B phase, and undergoes a NT to the C
phase well after the transition state. Fig. 4(b) shows the
FES when nc ' n

⇤, and is particularly complex. We ob-
serve two saddle points, with a broad, almost flat region
in between. In this case n⇤ is poorly defined, as indicated
by the broad maximum in G(nmax) in Fig. 5. These two
regimes were previously identified in Ref. [11], although
the NT for the nc > n

⇤ case was not directly observed
in their work. The possibility of two saddle points was
predicted in Ref. [12], but without explicitly connecting
this phenomenon to the two regimes found in Ref. [11].
Our results show that all of these cases are mutually con-
sistent and can occur within a common spectrum of be-

(a) (b)

(c) (d)

(e) (f)

Phase transition in a fluctuation can occur when A is stable [region (e)] 
or metastable [regions (d) and (f)]:

Free energy surface for fluctuations

• nmax = size of largest non-A cluster in the
bulk A phase

• f = fraction of largest cluster occupied by C
sites

• Free energy surface

G(nmax, f) = �kT log[P (nmax, f)] + const

evaluated using 2D umbrella sampling with
respect to nmax and f .
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where J is the magnitude of the nn interaction energy. In-
teractions between nn sites are antiferromagnetic, while
nnn interactions are ferromagnetic. The first (second)
sum in Eq. 4 is carried out over all distinct nn (nnn)
pairs of sites i and j. The third and fourth terms in Eq. 4
specify the influence of the direct magnetic field H and
the staggered field Hs. We define �i = (�1)xi+yi , where
xi and yi are integer horizontal and vertical coordinates
of site i, so that the sign of Hs�i alternates in a checker-
board fashion on the lattice. We sample configurations
using Metropolis single-spin-flip MC dynamics [1].

This model has been used previously to study metam-
agnetic systems exhibiting a tricritical point, for which it
provides a prototypical example in 2D [2–6]. At T = 0,
four stable phases are observed, depending on the val-
ues of H and Hs. There are two ferromagnetic phases
denoted U (all si = 1) and Ū (all si = �1); and two
antiferromagnetic “checkerboard” phases denoted C (all
si = �i) and C̄ (all si = ��i). Since the topology of the
phase diagram is unchanged when H ! �H, we only
consider H � 0 here. All our simulations are carried out
at temperature T such that J/� = 1, where � = 1/kT
and k is Boltzmann’s constant. This is well below the T

for the Néel transition (kT/J = 3.802) and the tricritical
point (kT/J = 1.205) [4]. Thus the phase diagram in
the plane of H and Hs at fixed T contains only first-
order phase transitions, arranged as three coexistence
lines meeting at a triple point located at Hs = 0 and
H = 3.9876 (see SM), as shown in Fig. 3.

Here we focus on the nucleation process by which the
bulk metastable A phase converts to C. We are therefore
interested in local fluctuations that occur within A, and
how they develop into a growing nucleus of C. Due to the
simplicity of our system, it is straightforward to identify
all such local fluctuations as clusters of size n that devi-
ate from the structure of A (see SM). All sites within a
given cluster can further be classified according to their
correspondence to either C or B. We thereby define the
C-like fraction of each cluster as f = nC/n, where nC is
the number of sites in the cluster that are classified as C.
Fig. 1 shows example clusters of various f , from mostly
B-like (f ' 0) to mostly C-like (f ' 1).
To quantify the nucleation pathway from A to C, we

measure G(nmax, f), the FES of the bulk A phase in
which the largest cluster in the system is of size nmax

and has composition f . We obtain the FES from um-
brella sampling MC simulations at fixed (N,Hs, H, T ), as
described in SM. Fig. 4 shows the FES at fixed Hs = 0.01
for three values of H within the stability field of C. The
free energy basin in the lower left corner of the FES cor-
responds to the metastable A phase, while the channel
in the upper right corner leads to the stable C phase.
Fig. 4 provides a clear example of the complex behavior

associated with TSN. To quantify the typical composition
of the nucleus as it grows, in Fig. 4 we also plot hfi, the
mean of f at fixed nmax (see SM). In all cases, the nucleus
undergoes a rapid change in hfi as nmax increases, from
an almost pure-B nucleus, to a composite nucleus with
a core of C wetted by a layer of B, as shown in Fig. 1.
We define the size at which this nucleus transition (NT)
occurs as nc, the value of nmax where hfi is steepest (see
SM). Distinct from the NT, there is also at least one
saddle point in the FES, corresponding to the transition
state where the system exits the metastable basin for
A. The 1D free energy barrier as a function of nmax

is defined as �G(nmax) = � log
R 1
0 exp[��G(nmax, f)] df ,

and is plotted in Fig. 5. We characterize the size of the
critical nucleus at the transition state as n⇤, the value of
nmax at the maximum of G(nmax) in Fig. 5.

Fig. 4 demonstrates the existence of two regimes of
TSN. In Fig. 4(a), nc < n

⇤: The NT occurs in the sub-
critical nucleus prior to the transition state, and the core
of the critical nucleus reflects the structure of the stable
C phase. In Fig. 4(c), nc > n

⇤: The critical nucleus cor-
responds to the B phase, and undergoes a NT to the C
phase well after the transition state. Fig. 4(b) shows the
FES when nc ' n

⇤, and is particularly complex. We ob-
serve two saddle points, with a broad, almost flat region
in between. In this case n⇤ is poorly defined, as indicated
by the broad maximum in G(nmax) in Fig. 5. These two
regimes were previously identified in Ref. [11], although
the NT for the nc > n

⇤ case was not directly observed
in their work. The possibility of two saddle points was
predicted in Ref. [12], but without explicitly connecting
this phenomenon to the two regimes found in Ref. [11].
Our results show that all of these cases are mutually con-
sistent and can occur within a common spectrum of be-
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FIG. 1. H = 3.981, Hs = 0.01, and L = 200. See open circles in Fig. ??.

the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.

Since ↵ < 1, the surface contribution always dominates
the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .

Let us assume that �AB < �AC , in which case B fluc-
tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.

We note that the above reasoning does not depend
on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.

In Fig. 2 we show schematically all possible relation-
ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.

III. SIMULATIONS

We conduct Monte Carlo (MC) simulations of a
2D Ising model, with nearest-neighbor (nn) and next-

nearest-neighbor (nnn) interactions, on a square lattice
of N sites with periodic boundary conditions. Each site
i is assigned an Ising spin si = ±1. The energy E of a
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modynamic regimes. To plot these curves we scale energies
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�µAB = "/2. To indicate the relative stability of the three
bulk phases in each panel, the phases are listed vertically ac-
cording to their value of µ, with µ increasing from bottom to
top in each list.
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the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.
Since ↵ < 1, the surface contribution always dominates

the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .
Let us assume that �AB < �AC , in which case B fluc-

tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.
We note that the above reasoning does not depend

on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.
In Fig. 2 we show schematically all possible relation-

ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.

III. SIMULATIONS

We conduct Monte Carlo (MC) simulations of a
2D Ising model, with nearest-neighbor (nn) and next-

nearest-neighbor (nnn) interactions, on a square lattice
of N sites with periodic boundary conditions. Each site
i is assigned an Ising spin si = ±1. The energy E of a
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the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.

Since ↵ < 1, the surface contribution always dominates
the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .

Let us assume that �AB < �AC , in which case B fluc-
tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.

We note that the above reasoning does not depend
on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.

In Fig. 2 we show schematically all possible relation-
ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.
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the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.
Since ↵ < 1, the surface contribution always dominates

the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .
Let us assume that �AB < �AC , in which case B fluc-

tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.
We note that the above reasoning does not depend

on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.
In Fig. 2 we show schematically all possible relation-
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B is metastable relative to one or both of the other two
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nc

• Two channels:
High-f channel for C fluctuations
Low-f channel for B fluctuations

• nc = coexistence value of nmax for
phase transition

• hfi = average value of f at fixed
nmax. Inflection in hfi close to nc.

• 1D free energy
G(nmax) =

�kT log
R 1
0 exp[��G(nmax, f)] df

has a kink at nc.

• Each channel has a metastable
extension beyond nc, ending in a
spinodal.

• At small n: C fluctuation is unstable.
Only B is stable.

• At large n: B fluctuation is unstable.
Only C is stable.

See Harrowell, JPCM (2010).
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the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.

Since ↵ < 1, the surface contribution always dominates
the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .

Let us assume that �AB < �AC , in which case B fluc-
tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c

= �
�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.

We note that the above reasoning does not depend
on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.

In Fig. 2 we show schematically all possible relation-
ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.
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We conduct Monte Carlo (MC) simulations of a
2D Ising model, with nearest-neighbor (nn) and next-

nearest-neighbor (nnn) interactions, on a square lattice
of N sites with periodic boundary conditions. Each site
i is assigned an Ising spin si = ±1. The energy E of a
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the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.
Since ↵ < 1, the surface contribution always dominates

the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .
Let us assume that �AB < �AC , in which case B fluc-

tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
1/d
c
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�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.
We note that the above reasoning does not depend

on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.
In Fig. 2 we show schematically all possible relation-

ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.
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the bulk phases B and A, and where �AC and �µAC are
similarly defined. Here we assume that the surface area
of the fluctuation is n

↵
�, where ↵ = (d � 1)/d depends

on the dimension of space d, and � is a shape factor.
For circular fluctuations in d = 2, ↵ = 1/2 and � =
(4⇡v)1/2, where v is the area per molecule. For spherical
fluctuations in d = 3, ↵ = 2/3 and � = (36⇡v2)1/3, where
v is the volume per molecule.
Since ↵ < 1, the surface contribution always dominates

the variation of G with n as n ! 0. As a result, small
fluctuations occurring in phase A that have the lowest
free energy (and are therefore most probable) will always
correspond to the phase B or C that has the lowest sur-
face tension with A, regardless of the values of �µAB or
�µAC .
Let us assume that �AB < �AC , in which case B fluc-

tuations dominate at small n. If GAB and GAC intersect
at n > 0, then the most probable fluctuation in A will
undergo a phase transition from B-like to C-like as n in-
creases. The value of n = nc at which such an intersec-
tion occurs is given by,

n
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�AC � �AB

�µAB ��µAC
. (2)

For nc to be non-zero, positive and real, the quotient
in Eq. 2 must be non-zero and positive. Assuming that
�AB < �AC , then if �µAB > �µAC , a fluctuation of A
will undergo a phase transition from B to C at n = nc as it
grows. However, if �µAB < �µAC , then nc is undefined
and the fluctuations of A will remain B-like for all n.
We note that the above reasoning does not depend

on the sign of �µAB or �µAC , and thus applies to the
behavior of the fluctuations of A regardless of whether A
is stable or metastable with respect to either or both of
the bulk B and C phases.
In Fig. 2 we show schematically all possible relation-

ships between GAB and GAC when �AB < �AC and when
B is metastable relative to one or both of the other two
phases.
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0 10 20
n

0

20

40

60

G
/ε

0 10 20
n

0

20

40

60

G
/ε

0 20 40 60 80
n

-10

0

10

G
/ε

0 20 40
n

0

10

G
/ε

0 10 20 30 40
n

0

10

20

G
/ε

0 20 40
n

0

10

G
/ε

(a)

A
C
B

C
A
B

C
B
A

B
C
A

A
B
C

B
A
C

(b)

(c) (d)

(e) (f)

FIG. 2. GAB (blue) and GAC (red) versus n in various ther-
modynamic regimes. To plot these curves we scale energies
by " = |�µAC | and surface tensions by "v

�1/d. In all panels
�AC = 2�AB = 2"v�1/d. In the righthand panels �µAC = "

and in the lefthand panels �µAC = �". From top to bottom,
�µAB increases: (a) �µAB = �"/2; (b) �µAB = �3"/2;
(c) �µAB = "/2; (d) �µAB = �"/2; (e) �µAB = 2"; (f)
�µAB = "/2. To indicate the relative stability of the three
bulk phases in each panel, the phases are listed vertically ac-
cording to their value of µ, with µ increasing from bottom to
top in each list.

nc



two-step nucleation

Two-step nucleation 3

-0.1 -0.05 0 0.05 0.1

H
s

3.85

3.9

3.95

4

4.05

H

A C

B

FIG. 3. Phase diagram for kT/J = 1. Solid lines are coex-
istence lines. The dashed lines are metastable extensions of
coexistence lines calculated using Eq. 14. The dot-dashed line
is the limit of metastability of the U phase for a system of size
L = 64.

microstate is given by,

E

J
=

X

hnni

sisj �
1

2

X

hnnni

sisj �H

NX

i=1

si �Hs

NX

i=1

�isi, (3)

where J is the magnitude of the nn interaction energy. In-
teractions between nn sites are antiferromagnetic, while
nnn interactions are ferromagnetic. The first (second)
sum in Eq. 4 is carried out over all distinct nn (nnn)
pairs of sites i and j. The third and fourth terms in Eq. 4
specify the influence of the direct magnetic field H and
the staggered field Hs. We define �i = (�1)xi+yi , where
xi and yi are integer horizontal and vertical coordinates
of site i, so that the sign of Hs�i alternates in a checker-
board fashion on the lattice. We sample configurations
using Metropolis single-spin-flip MC dynamics [1].

This model has been used previously to study metam-
agnetic systems exhibiting a tricritical point, for which it
provides a prototypical example in 2D [2–6]. At T = 0,
four stable phases are observed, depending on the val-
ues of H and Hs. There are two ferromagnetic phases
denoted U (all si = 1) and Ū (all si = �1); and two
antiferromagnetic “checkerboard” phases denoted C (all
si = �i) and C̄ (all si = ��i). Since the topology of the
phase diagram is unchanged when H ! �H, we only
consider H � 0 here. All our simulations are carried out
at temperature T such that J/� = 1, where � = 1/kT
and k is Boltzmann’s constant. This is well below the T

for the Néel transition (kT/J = 3.802) and the tricritical
point (kT/J = 1.205) [4]. Thus the phase diagram in
the plane of H and Hs at fixed T contains only first-
order phase transitions, arranged as three coexistence
lines meeting at a triple point located at Hs = 0 and
H = 3.9876 (see SM), as shown in Fig. 3.

Here we focus on the nucleation process by which the
bulk metastable A phase converts to C. We are therefore
interested in local fluctuations that occur within A, and
how they develop into a growing nucleus of C. Due to the
simplicity of our system, it is straightforward to identify
all such local fluctuations as clusters of size n that devi-
ate from the structure of A (see SM). All sites within a
given cluster can further be classified according to their
correspondence to either C or B. We thereby define the
C-like fraction of each cluster as f = nC/n, where nC is
the number of sites in the cluster that are classified as C.
Fig. 1 shows example clusters of various f , from mostly
B-like (f ' 0) to mostly C-like (f ' 1).
To quantify the nucleation pathway from A to C, we

measure G(nmax, f), the FES of the bulk A phase in
which the largest cluster in the system is of size nmax

and has composition f . We obtain the FES from um-
brella sampling MC simulations at fixed (N,Hs, H, T ), as
described in SM. Fig. 4 shows the FES at fixed Hs = 0.01
for three values of H within the stability field of C. The
free energy basin in the lower left corner of the FES cor-
responds to the metastable A phase, while the channel
in the upper right corner leads to the stable C phase.
Fig. 4 provides a clear example of the complex behavior

associated with TSN. To quantify the typical composition
of the nucleus as it grows, in Fig. 4 we also plot hfi, the
mean of f at fixed nmax (see SM). In all cases, the nucleus
undergoes a rapid change in hfi as nmax increases, from
an almost pure-B nucleus, to a composite nucleus with
a core of C wetted by a layer of B, as shown in Fig. 1.
We define the size at which this nucleus transition (NT)
occurs as nc, the value of nmax where hfi is steepest (see
SM). Distinct from the NT, there is also at least one
saddle point in the FES, corresponding to the transition
state where the system exits the metastable basin for
A. The 1D free energy barrier as a function of nmax

is defined as �G(nmax) = � log
R 1
0 exp[��G(nmax, f)] df ,

and is plotted in Fig. 5. We characterize the size of the
critical nucleus at the transition state as n⇤, the value of
nmax at the maximum of G(nmax) in Fig. 5.

Fig. 4 demonstrates the existence of two regimes of
TSN. In Fig. 4(a), nc < n

⇤: The NT occurs in the sub-
critical nucleus prior to the transition state, and the core
of the critical nucleus reflects the structure of the stable
C phase. In Fig. 4(c), nc > n

⇤: The critical nucleus cor-
responds to the B phase, and undergoes a NT to the C
phase well after the transition state. Fig. 4(b) shows the
FES when nc ' n

⇤, and is particularly complex. We ob-
serve two saddle points, with a broad, almost flat region
in between. In this case n⇤ is poorly defined, as indicated
by the broad maximum in G(nmax) in Fig. 5. These two
regimes were previously identified in Ref. [11], although
the NT for the nc > n

⇤ case was not directly observed
in their work. The possibility of two saddle points was
predicted in Ref. [12], but without explicitly connecting
this phenomenon to the two regimes found in Ref. [11].
Our results show that all of these cases are mutually con-
sistent and can occur within a common spectrum of be-

• If A is metastable, the fluctuation
phase transition is superimposed on
the nucleation process, producing
two-step nucleation.

• nc can occur before, during or after a
transition state (saddle point).

• Note broad transition region in (b).
Estimating nucleation rate will be
challenging.

See Duff and Peters, 
JCP (2009).
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Unconstrained runs at H=3.975, 
Hs=0.02: 
• Individual runs started at the 

transition state take widely varying 
paths to the stable phase. 

• This behaviour is consistent with the 
wide range of pathways observed in 
many experiments.

Unconstrained run at H=3.983, Hs=0.01: 
• Individual run started at the transition 

state. 
• Here the system remains trapped in 

the lower channel well beyond the 
cluster size for the transition in the 
nucleus predicted solely by 
thermodynamics. 

• Demonstrates that dynamics play a 
key role. 

• Consistent with observation of 
mesoscale pre-nucleation clusters 
observed in experiments.


