Introduction to 3D Digital SiPM and Latest Results for Particle Physics

Jean-François Pratte

Simon Carrier, Audrey Corbeil Therrien, Keven Deslandes, Pascal Gendron, Michel Labrecque-Dias, William Lemaire, Frédéric Nolet, Samuel Parent, Charles Richard, Nicolas Roy, Tommy Rossignol, Gabriel St-Hilaire, Frédéric Vachon, Fabrice Retiere, Henri Dautet, Réjean Fontaine, Serge A. Charlebois

2019 CAP Congress - Simon Fraser University (Burnaby, BC)

What is a Single Photon Avalanche Diodes (SPAD)?

Diode I-V Curve and Operating Regime

Single Photon Avalanche Diode (SPAD) Operation Cycle

UNIVERSITÉ DE

Analog VS Digital Silicon Photomultiplier (SiPM)

Analog and Digital Silicon PhotoMultiplier (SiPM): The Definition

Single photon avalanche diode (SPAD) is the basic unit cell of analog and digital SiPM

Analog and Digital SiPM

- > A SPAD is a **Boolean detector: digital information available at the sensor level**
- With an **analog SiPM we sum binary detectors (an array of SPAD) to get a** <u>linear response</u>...
 - Then, use a current/transimpedance amplifier + shaper + ADC

To digitize the data... again!

- > With a **digital SiPM**, **each SPAD is coupled one-to-one** with its individual readout circuit.
 - Photon to bit conversion at the sensor level
 - Improved noise immunity
 - Output capacitance is not an issue (compared to SiPM)
 - Single photon counting mitigated
 - Control over each SPAD: faulty or radiation damaged = shut off
 - Lower dead time (sense-quench-recharge < 10 ns)</p>
 - Mitigates afterpulsing noise
 - No trigger = Low power consumption
 - SHERBROOKE

3D Digital SiPM VS 2D Digital SiPM

2D Digital SiPM: Trade off and Solution \rightarrow 3D Digital SiPM

- High fill factor for improved photosensitive area
- Freedom for in-pixel electronics functionalities
- Heterogeneous technologies
 - SPAD in optimal technology with
 - CMOS readout circuits in optimal process for application specific functionalities

3D Digital SiPM

3D Digital SiPM (3DdSiPM) for Low Power and Large Area Detectors

University of Alabama, Tuscaloosa AL, USA M HUGHES, O NUSAIR, I OSTROVSKIY, A PIEPKE, AK SOMA, V VEERARAGHAVAN University of Bern, Switzerland – J-L VUILLEUMIER Brookhaven National Laboratory, Upton NY, USA M CHIU, G GIACOMINI, V RADEKA, F RAGUZIN, S RESCIA, T TSANG University of California, Irvine, Irvine CA, USA – M MOE California Institute of Technology, Pasadena CA, USA – P VOGEL

Lawrence Livermore National Laboratory, Livermore CA, USA J BRODSKY, M HEFFNER, A HOUSE, S SANGIORGIO, T. STIEGLER University of Massachusetts, Amherst MA, USA – S FEYZBAKHSH, D KODROFF, A POCAR, M TARKA McGill University, Montreal QC, Canada

T BRUNNER, K MURRAY, T TOTEV, L DARROCH, S AL KHARUSI, T MCELROY University of North Carolina, Wilmington, USA – T DANIFLS

I BADHREES, R GORNEA, C JESSIMAN, T KOFFAS, D SINCLAIR, B, VEENSTRA, J WATKINS Colorado State University, Fort Collins CO, USA C CHAMBERS, A CRAYCRAFT, D FAIRBANK, W FAIRBANK JR, A IVERSON, J TODD Drexel University, Philadelphia PA, USA MJ DOLINSKI, P GAUTAM, E HANSEN, YH LIN, E SMITH, Y-R YEN Duke University, Durham NC, USA - PS BARBEAU Friedrich-Alexander-University Erlangen, Nuremberg, Germany G ANTON, J HOESSL, T MICHEL, M WAGENPFEIL, T ZIEGLER IBS Center for Underground Physics, Daejeon, South Korea – DS LEONARD IHEP Beijing, People's Republic of China G CAO, W CEN, Y DING, X JIANG, Z NING, X SUN, T TOLBA, W WEI, L WEN, W WU, X ZHANG, I ZHAO IME Beijing, People's Republic of China - L CAO, X HNG, Q WANG **ITEP Moscow**, Russia V BELOV, A BURENKOV, A KARELIN, A KOBYAKIN, A KUCHENKOV, V STEKHANOV, C University of Illinois, Urbana-Champaign IL, USA - D BECK, M COON, J ECHEVERS, S LI, LYANG Indiana University, Bloomington IN, USA - JB ALBERT, SLDAUGHERTY, G VISSER

Oak Ridge National Laboratory, Oak Ridge TN, USA — L FABRIS, RJ NEWBY Pacific Northwest National Laboratory, Richland, WA, USA I ARNQUIST, EW HOPPE, JL ORRELL, G ORTEGA, C OVERMAN, R SALDANHA, R TSANG Rensselaer Polytechnic Institute, Troy NY, USA – E BROWN, K ODGERS Université de Sherbrooke - F BOURQUE, S CHARLEBOIS, M CÔTÉ, D DANOVITCH, H DAUTET R FONTAINE, F NOLET, S PARENT, JF PRATTE, T ROSSIGNOL, J SYLVESTRE, F VACHON SLAC National Accelerator Laboratory, Menlo Park CA, USA S DELAQUIS, A DRAGONE, G HALLER, LJ KAUFMAN, B MONG, A ODIAN, M ORIUNNO, PC ROWSON, K SKARPAAS University of South Dakota, Vermillion SD, USA - T BHATTA, A LARSON, R MACLELLAN Stanford University, Stanford CA, USA – J DALMASSON, R DEVOE, D FUDENBERG, G GRATTA, M JEWELL, S KRAVITZ, G LI, M PATEL, A SCHUBERT, M WEBER, S WU Stony Brook University, SUNY, Stony Brook NY, USA - K KUMAR, O NJOYA Technical University of Munich, Garching, Germany - P FIERLINGER, M MARINO TRIUMF, Vancouver BC, Canada - J DILLING, P. GUMPLINGER, R KRÜCKEN, Y LAN, F RETIERE STRICKLAND Yale University, New Haven CT, USA - A JAMIL Z LL D MOORE O XIA

nEXO – Search for $0v\beta\beta$ – Baseline Design

- 5T liquid Xenon, enriched ¹³⁶Xe
- Charge TPC and scintillation readout
- Analog SiPM on silicon interposer
 - Photosensitive surface: 4 5 m²
 - $\sim 1x1 \text{ cm}^2 \text{ SiPM}$ in tiles $\sim 10x10 \text{ cm}^2$
 - Power budget for scintillation readout: 50 W (100 W with data transmission)

Liquid Argon Detector with Pulse Shape Discrimination

CFI Innovation Fund 2017

<u>Title:</u> Facility for Development of Cryogenic Detectors and Readout Systems for Subatomic Physics and Particle Astrophysics <u>Principal investigator:</u> Mark Boulay (Carleton)

Université de Sherbrooke contributions: 3D digital SiPM with Embedded Digital Signal Processing for Pulse Shape Discrimination in LAr

Low Power 3D Digital SiPM for nEXO

The Goal: Tile of 3DdSiPM with a Controller

Development of the 3DdSiPM Technology: The SPAD Array and the 3D Vertical Integration Process

How to Build a Fully Industrial 3D Digital SiPM?

2016: First 3D digital SiPM prototype

Wafer scale / industrial process 3D digital SiPM technology

Main Industrial Collaborator : Teledyne DALSA

High-end CCD process line --> excellent for SPAD R&D

- 150 mm process line
- low contaminant / gold free clean rooms

The Eyes of the Mars Curiosity Rover. Tech Briefs (2012)

UNIVERSITÉ DE SHERBROOKE

Life on Mars: Rover landing gives boost to Canadian tech sector. The Globe and Mail (2012)

World top 5 Microelectromechanical systems (MEMS) Foundry

- --> excellent for wafer level integration
- 150 mm and 200 mm process line
- Wafer thinning, deep etching, bonding, ...

Teledyne DALSA Semiconductor Memory Egolarisation Memory Egolarisation	MEMS Foundry Rankings (2017 sales in US\$M)	
	STMicroelectronics	174
	Teledyne DALSA	60
	Silex Microsystems	50
	TSMC	47
	X-Fab	42

Status of the MEMS Industry 2018 Market and technology Report Yole Development (2018)

Teledyne DALSA Semiconductor Inc. (est. 1980) ~ 500 employees located at Bromont near Montreal, Canada

Courtesy of Teledyne DALSA

3D digital SiPM technology : SPAD array layer

- Top tier : 150 mm wafer (custom process using DALSA CCD production line)
- 1x1 to 5x5 mm² SPAD array
- 50-100 um diameter front-side illuminated shallow P+N type SPAD (~0.4 um depth)
- 4 um width / 22 um depth optical/electrical isolation trench (highly doped polysilicon filling)
- 2D process for SPAD development

SPAD development plateform

PAD wafer :

2D SPAD wafer :

ន

- Single cell with variants
 - SPAD size and shape
 - process variation
- Small array (4 x 4 cells)
 - cell size and pitch
 - w/ or w/out trench

CMOS ASIC for SPAD probing

- TSMC CMOS 180 nm
- 64 quenching circuits
 - anode/cathode
 - up to 10 V excess voltage
 - variable input threshold
 - variable holdoff
- 4 outputs (MUX)

side-by-side wirebonding

flipchip packaging

2D SPAD First Batch : Measurement Results

	2D SPAD	MPD PD5CT
Size (um)	36 um (square)	50 um (circle)
Breakdown / Overvoltage (V)	22.1/4	28.7 / 5
Dead time	100 ns - 10 us	300 ns
Single Photon Timing Resolution (ps FWHM)	23 @ 410 nm	27 @ 820 nm
Photon Detection Efficiency (%)	52% peak at 500 nm >30% at 390-600 nm	47% peak at 550 nm >30% at 450-700 nm

High-rate photon counting and picosecond timing with silicon-SPAD based compact detector modules A. Giudice (Journal of Modern Optics 2007)

VUV postprocessing for noble liquid experiments

- Delta-doping is used on CCDs to enhance the deep UV response
- Surface energy band engineering (ultra thin surface doping)
- UV-generated electrons drift towards the SPAD junction
- Simuation on SPAD demonstrates quantum efficiency improvement
- Will be use in addition to anti-reflective coating

- > 35% PDE at 175 nm (LXe)
- > 15% PDE at 125 nm (LAr)

Delta-doped back-illuminated CMOS imaging arrays: progress and prospects. M.E. Hoenk (In Infrared Systems and Photoelectronic Technology IV 2009)

22

Development of the 3DdSiPM Technology:

Microelectronic Readout Integrated Circuit for Low Power 3DdSiPM and Large Area Detectors

3DdSiPM on a Tile with a Controller

CMOS Readout for 3DdSiPM – Overview

- TSMC 180 nm BCD process
- $5 \times 5 \text{ mm}^2$ active area

5.3 mm

CMOS Readout for 3DdSiPM – Low Power Architecture

- nEXO operation mode: **INTEGRATION**
- Event driven: each 3DdSiPM signals the tile controller when a SPAD triggers
- Asynchronous (no event no clock low power)
- \circ Integration time from 10 ns to 1 μs (350 ns)
- Transmission of total counts (over integration time) when requested by the tile controller
- Analog monitor for demonstration

- LAr operation mode: **CONTINUOUS SAMPLING**
 - Synchronous operation by a clock
 - Flags the controller to signal counts
 - Low flag jitter (<500 ps) to allow time-of-flight
 - 128 FIFO depth for transmission on request
 - Sampling bins: short (10 ns) and long frames (1 μs) to allow PSD (Pulse Shape Discrimination)

Simulation of the 3 Outputs from the ASIC

Coincidence / Dark Count Filter

• Single **flag** on a tile in a **coincidence window** : **event rejected** (dark count)

Coincidence window

 Multiple flags on a tile in a coincidence window : start acquisition and read out after acquisition time
 Read out the

- Coincidence window duration, acquisition time and flag threshold managed by tile controller (programable)
- Possibility to keep all **flags** (threshold of zero)

time

• No readout on dark count to limit power consumption

Time Binning for Pulse Shape Discrimination in LAr

Microelectronic Readout Integrated Circuit for Low Power 3DdSiPM and Large Area Detectors

Measurements and Results

« Apollo 13 » Setup – Functionnality Tests

SUNIVERSITÉ DE SHERBROOKE

« Apollo 13 » Setup – Functionnality Tests

- Poor PCB signal integrity : new PCB this week!
- 61 SPAD on the ASIC
- 90 % of the digital functionalities **tested** and **validated**
 - Flag, digital sum, FIFO, data transmission, ASIC configuration

MEASURED - Integration Mode

- ADC like acquisition
- Number of pixels triggered (in hold off) at the moment of the acquisition
- Each circle represents the result from the digital register

SHERBROOKE

MEASURED – Binning Mode

- Time binning acquisition
- Number of pixels triggered in each time bin
- Each number represents the result from the digital register

DIGITAL SUM FROM ASIC

Conclusion

- No fundamental limitation to build 3D digital SiPM, but it is a great engineering challenge.
- First 3D Digital SiPM expected in 2020.
- SPAD array, 3D integration and readout electronics developed and optimized in parallel.
 - Microelectronics readout soon ready for wafer level production.
 - SPAD R&D as fast as we can within Teledyne-DALSA.
 - Issue with 3D bonding: bad luck. Problem is now fixed.
- We are recruiting! Ph.D. and postdoc.
- In parallel with particle physics instrumentation, electronic readout for:
 - Positron Emission Tomography (PET) aiming at sub-10 ps FWHM coincidence timing resolution.
 - Photon gating Computed Tomography (CT) scanner.
 - Quantum key distribution.

A team's work

Université de Sherbrooke

- Serge Charlebois
- <u>Réjean Fontaine</u>
- <u>Roger Lecomte</u>
- <u>Henri Dautet</u>
- Julien Sylvestre
- David Danovitch
- Caroline Paulin
- Étienne Paradis
- Étienne Grondin
- Konin Koua

S 3IT

- Nicolas Roy • Frédéric Nolet
- Samuel Parent
- Audrey Corbeil Therrien
- Benoit-Louis Bérubé
 Marc-André Tétrault
- Frédéric Vachon
- Tommy Rossignol
- Gabriel St-Hilaire
- Jacob Deschamps
 - Xavier Bernard
 - Thomas Dequivre
 - William Lemaire

- Luc Maurais
- Maxime Côté
- Vincent Philippe Rhéaume
- Étienne Desaulniers Lamy
- Alexandre Boisvert
- Michel Labrecque-Dias
- Pascal Gendron
- Arnaud Samson
- Jonathan Bouchard
- Frédérik Dubois
- Marc-Olivier Mercier

Fonds de recherche

et les technologies

sur la nature

• Frédéric Bourque

<u>Collaborators</u>

- Fabrice Retiere
- Paul Lecoq
- nEXO Collaboration
- nEXO Canada

* *

uébec 🖬 🖬

OUANTIQUE

• Simon Viel

<u>Teledyne-DALSA</u> Semiconducteur Inc

- Claude Jean (CEO)
- Stephane Martel
- Robert Groulx

