F.RETIERE IN COLLABORATION WITH J.P. JANEZ (ALBERTA) AND D.GRANT (MICHIGAN)

HYBRID PHOTODETECT

HAMAMATSU

PHOTON IS OUR BUSINESS

HIGH SPEED COMPACT HPD (Hybrid Photo Detector) SERIES R10467U SERIES / R11322U-40 / H13223-40

FEATURES

- High-speed response
- High time resolution
- High sensitivity
- Directly connects to the HPD power supply (R10467U-xx-01, R11322U-40-01, H13223-40)

APPLICATIONS

- Laser scanning microscope (Confocal / Two-photon)
- FCS (Fluorescence Correlation Spectroscopy)
- LIDAR (Light Detection and Ranging)
- ●TCSPC (Time-correlated Single Photon Counting)

Left: R10467U-40, Center: R11322U-40, Right: H13223-40

IMPRESSIVE PERFORMANCES ...

Parameter		R10467U-06	R11322U-40	R10467U-40 H13223-40	R10467U-50	Unit
Spectral response		220 to 650	300 to 720	300 to 720	380 to 890	nm
Photocathode	Material	Bialkali	GaAsP	GaAsP	GaAs	
	Effective area	φ 6	φ5	φ3	φ3	mm
Window material		Synthetic silica	Borosilicate glass			
Window type		Plano-concave	Flat			
Operating ambient temperature		+15 to +35				°C
Storage temperature		0 to +40				°C

MAXIMUM RATINGS

Parameter	Value		
Photocathode voltage	-8500		
Avalanche diode (AD) reverse bias voltage	Vb -10 *1		
Average photocathode current	200		

^{*1:} Vb is the AD bias voltage at the leakage current 1 µA. The voltage of Vb is from 300 V to 500 V.

SPECIFICATIONS (Typ.)

Parameter	Description / Value				Unit	
Quantum efficiency		28 '4	45 ' ⁵	45 ' ⁵	14 ^{'6}	%
Gain *2		1.2 × 10 ⁵				_
	Rise time	400				ps
Time response	Fall time	400				ps
	Width	600				ps
T.T.S. (Transit Time Spread) *3	FWHM	50	170	90	130	ps

^{*2:} At the photocathode voltage of -8 kV and the AD bias voltage of Vb (breakdown voltage) -10 V.

^{*3:} At the single photon state and the full illumination on photocathode, specified as FWHM (Full Width at Half Maximum). These valves include the jitter of the electronics about 30 ps.

WHY HPD FOR ASTRO-PARTICLE PHYSICS?

- Low dark noise at room temperature over large area
 - SiPMs are way too noisy for water Cerenkov and liquid scintillator
- Simplify the gain stage -> cheaper
- Smaller transit time spread
 - Easier to manage field line to a flat gain stage
- Possible imaging capabilities

OUTLINE

- Other existing HPD
 - CUPID/SIGHT
 - Chinese PMT for JUNO
 - ABALONE
 - VSiPMT
- ▶ HPD development in Canada: the digital HPD

EXISTING HPDS

LOW RADIOACTIVITY HRQ – Hamamatsu collaboration

1.3 the 20 inch prototypes with HDE performance

In 2015, the MCP-PMT work group did the best to improve the CE of the MCP modules, and finally, the CE of the MCP-PMTs was improved from 70% to 100%.

ABALONE - FOR COMPLETENESS

RICH 2018 - MOSCOW

Another step in photodetection innovation: the 1-inch VSiPMT prototype

F.C.T. Barbato

RICH 2018 - MOSCOW

Another step in photodetection innovation: the 1-inch VSiPMT prototype

F.C.T. Barbato

Efficiency is highly stable over 3200 V. No need for high voltage stabilization.

- HV: photoelectron transfer NO power consumption (NULL current)
- LV-based gain <u>EASY STABILIZATION</u>
- Reducing the SiO₂ coating layer it will be possible to reach the plateau region at even lower voltages.

DOING BETTER THAN VSIPMT

- Use VUV SiPM design to reduce HV
 - Very thin dielectric on top of Silicon (~20nm)
 - Very shallow junction with collection very close to the surface (from a few nm)
- Play some tricks to generate multiple avalanches per photoelectrons
- Use digital 3D integrated avalanche diode
 - Photon to digital converters
- Then with other issues: PE back scattering, photons from avalanches saturation

TESTING THE GAIN STAGE

A concept from 5 years ago

▶ JP Janez will implement this concept at UofA, probably

U.ALBERTA ELECTRUMELD

Isolate gain stage

Particle trajectories [m/s]

LETS BUILD A LARGE AREA PHOTON TO BIT CONVERTER IN

Сремра профина dedicated single electron avalanche diode array

- Integrated in Sherbrooke's 3D integrated scheme
 - Tailor CMOS chip for this purpose
- Test gain stage using dedicated setup
- Collaborate with PMT manufacturer for delivering a final product