

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Water Cherenkov for Long baseline neutrino oscillation

Akira Konaka (TRIUMF) JUne 7, 2019

Hyper-Kamiokande

- 187kton (fid.) water Cherenkov
 - 8 times larger than SuperK
- Physics goal
 - precision v oscillation
 - long baseline neutrinos
 - atmospheric neutrinos
 - neutrino astronomy
 - supernova & solar neutrino
 - new physics
 - nucleon decays
 - dark matter
 - non-standard v interaction (NSI)
- Construction to start in 2020

Water Cherenkov detectors in Kamioka

- Precise neutrino oscillation studies
 - larger detector
 - more precise information
 - better efficiency
 - better timing
 - less noise
 - more granularity
 - better calibrations
 - control of systematics

Hyper-K 20" photosensor development

- New Hamamatsu 20" Box&Line PMT
 - x2 better photon detection efficiency:
 - QE=30%, CE=95%
 - x2 better transit time spread:
 - TTS=2.7nsec FWHM
 - x2 better single photoelectron resolution
 - 53%→35%
 - x2 better pressure resistance:
 - 60m water depth
 - x2 higher dark rate:
 - 8kHz: effort to reduce it
 - radioactivity in the glass
 - Hamamatsu mass production started for JUNO project

MCP PMT for JUNO

Туре	8" GDB-6081			20"					
				GDB-6201			GDB-6203		
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.
Photocathode characteristics					e				
Spectral Range(nm) Maximum sensitivity at (nm)	300-650 380			300-650 380			300-650 380		
Sensitivity Luminous(µA/lm) QE at 405 nm(%)		70 26			80			80	
Supply Voltage(V)	1500	1900	2 400	1500	1750	2000	1 <mark>65</mark> 0	1900	2000
Gain Anode Dark Current(nA) Background Noise@22°C (cps) Single Electron Spectrum Energy Resolution(%) Peak to Valley Ratio		1×10 ⁷ 100 5 k 60 2.5	700 20 k	3	1×10 ⁷ 150 30 k 35 7	1000 100 k 10	2.5	1×10 ⁷ 100 25 k 40 4.5	1000 100 k 6
Anode Pulse Rise Time(ns) TTS (FWHM) (ns)		1.4 3			1.4			1.4	

• SuperK:

- 40% coverage with 20" R3600 PMT's
 - 10 pe/MeV: 1000 photoelectrons for 100MeV electrons
- atmospheric neutrino reconstruction and efficinecy were similar at SK-III with 20% photocathode coverage:
 - 1/2 in light yield and 1/2 in granularity was OK for atm. ν
- HyperK:
 - 20% coverage with x2 better detection efficiency 20" PMT
 - light yield is the same
 - granularity near the wall is similar to SK-III
 - Significant improvements expected by adding multi-PMT's
 - intermediate water Cherenkov detector (IWCD/NuPRISM)
 - improved reconstructions on events near the wall and multi-ring events
 - neutron tagging (anti-neutrino tagging)

NuPRISM linear combination

IWCD/NuPRISM detector requirement

- Lesson from the K2K 1kton near water Cherenkov
 - 20" PMT was too coarse in event reconstruciton
 - limited by the detector calibration
- Fiducial volume (vertex) systematics
 - 1% uncertainty: $2\Delta R/R=1\% \rightarrow \Delta R=0.5\% R$
 - HK:15cm, IWCD:2cm
 - Finer granularity and better timing are required:
 - SK: 50cm(PMT)/30m=1.7%, TTS(σ)=2.5nsec ~ 50cm
 - HK: 50cm(PMT)/60m=0.8%, TTS(σ)=1.1nsec ~ 20cm
 - IWCD: 7.6cm(PMT)/8m=0.9%, TTS(σ)=0.6nsec ~ 12cm
- Precise calibration
 - Precise (~1cm) position information: Photogrammetry
 - Secondary interactions and other potential problems
 - IWCD test beam experiment

multi-PMT (details in T.Lindner's talk)

multi-PMT (mPMT)

- Concept developed by KM3NeT
- 19 of 3" PMT's in 20" vessel
 - economical 3" PMT's
- mPMT for IWCD (NuPRISM)
 - finer granularity and better timing resolution for a smaller detector
- mPMT for HyperK
 - improved event reconstruction
 - finer granularity
 - multi-ring reconstruction
 - x2 better timing and lower dark rate
 - neutron tagging

- Benefit of 3" PMT's for multi-PMT
 - Finer granularity: 3/20=15% in size, 3²/20²=2.25% in area
 - TTS (FWHM): 1.4nsec (Hamamatsu R14374), 3.7nsec (HZC XP82B20)
 - TTS = 5.5nsec (SK 20" R3600), 2.7nsec (HK 20" R12860)
 - Dark rate (10°C): 60Hz (R14374), 120Hz (XP82B20)
 - Dark rate 8kHz for HK PMT: 8kHz x 3²/20²=180Hz
 - Stability:
 - 3" is less sensitive to magnetic field and mechanical shocks
- Economical option is developed for PET detector (and KM3NeT)
 - 20" PMT: \$10/inch² (\$4000/PMT)
 - 3" PMT: \$20/inch² (\$200/PMT)
 - light concentrator to enhance sensitivity for mPMT

Multi-ring event reconstructions

- CC1 π measurement
 - Additional events in the CP violation studies
 - identify anti-neutrino (CC1π-) and neutrino (CC1π+) in atmospheric ν
 - mass hierarchy (several GeV)
 - CP (1-2GeV)
- Proton decay reconstruction
- Astronomical neutrinos, indirect dark matter
 - neutrino direction pointing

- Scientific benefit of the neutron tagging = \overline{v} tagging
 - study wrong sign component in CP measurement
 - neutrino contamination in anti-neutrino cancels CP
 - sub-GeV atmospheric neutrino oscillogram
 - anti-neutrino has forward cross section: neutrino direction
 - supernova neutrino detection
 - reject solar v backgrounds in relic supernova v: energy spectrum
 - enhance v_e elastic in supernova burst: supernova direction
- Requirements for neutron tagging: $np \rightarrow d\gamma(2.2MeV)$
 - limited by accidental dark hit backgrounds:
 - low dark rate and better timing of the new 3" PMT's has an impact

Neutrinos from the past supernova explosions: History of black hole formation can be investigated

- 1% level calibration is required for future water Chrenkov
 - Detailed understanding of all the elements required
 - rely on physics control samples as check of systematics
- Calibration of each components
 - water transmission and reflection: laser light source
 - position calibration (source, PMT): photogrammetry similar to SNO+
 - in-situ PMT response measurement:
 - photon detection efficiency, timing calibration, magnetic field measurement
 - measure environmental parameters: temperature, magnetic field
 - ex-situ PMT response measurement: photosensor test facility
 - characterize basic responses of the PMT
- Measurement of physics process in water Cherenkov: beam test
 - Hadron interactions inside the water
 - Cherenkov photon distribution measurement, e.g. impact of delta-ray production

Photosensor Test Facility (PTF) at TRIUMF

compensation coil, Giron shield

Magnetic shielding

- Robotic arms with laser and PMT
 - laser light with polarization
 - monitor PMT
 - magnetometer

Two optical boxes Tank (and PMT) will be put inside coil gantry 1 gantry 0 Υ tilt φ receiver rotation θ PMT photo-Tank cathode

•

Gain and relative detection efficiency after B compensation

Pattern (big valley!) in Gain and Efficiency reflecting the dynode structure

Detection efficiency with B-y (+-50mG)

By has a large effect

Detection efficiency B-z (+-50mG)

Bz has little effect

Multi-PMT plan for water Cherenkov

FY2018 RTI: prototype

FY2019 RTI: beam test prototype

CFI-IF proposal (2019) IWCD/NuPRISM

SuperK refurbishment and water Cherenkov calibration

360 degree underwater camera for photogrammetry

soak test with pure water in Kamioka

- SuperK water leak stopped after refurbishment, ready for Gd phase
 - residual magnetic field and PMT orientation measurements were performed
- Canadian group is involved in the calibration campaign
 - Canadian group is also preparing test photogrammetry in SuperK

- Stringent requirements for the future water Cherenkov
 - goal of the systematic uncertainty is ~1%
 - need to be smaller than the statistical uncertainty of 3% at HK
 - even more challenging for smaller detector like IWCD/NuPRISM
- Improvement in hardware and calibration
 - new 20" PMT with better timing, efficiency, and resoution
 - multi-PMT with superior segmentation and timing resolution
 - improved calibration method being developed
 - photosensor test facility, photogrammetry

Backup slides

mPMT prototyping

SK Xe/laser calibrations

Auto-laser system

Xe ball

Photogrammetry possibility at SK

Photogrammetry test

- Precise response of water Cherenkov requires studies
 - backward light mismatch (~10%) in SK: impact on vertex
 - · difference observed in delta ray simulation models
 - hadron interactions in water
 - Demostration of the calibration procedure with known beam
- Prototype IWCD detector test at CERN (Fermilab)

