UNDERSTANDING VOLMEUR ARTWORK WITH OPTICAL AND ELECTRON MICROSOPY

Elisa García-Tabarés Valdivieso CERN R&D Engineer in Material Science elisa.garcia-tabares.valdivieso @cern.ch

CERN

Outline

- CERN: a brief introduction
- Context
- Experimental
- Results
- Summary & Conclusions

- CERN = the European Organization for Nuclear Research
- Intergovernmental organization, founded in 1954
- 22 Member States, 10 000 staff members+associates
- Located on both sides of the French-Swiss border closed to Geneva

Overview of CMS detector

Overview of ATLAS detector

Simulation from CMS of protons colliding

→ The world's most powerful particle accelerators

CERN structure

EN-MME-MM

- Development
- Selection & Specification
- Characterization & Analysis

Metals and alloys, composites, ceramics and thin films

- Quality control of materials and components
- Non-destructive testing and dimensional controls
- Failure analyses
- Mechanical tests
- Development of new materials

EN-MME-MM

NDT

Gonzalo Arnau 112 2-018

Aline Piguiet 112 2-021

Alexandre Porret 112 2-021

Simon Garner 112 2-022

Mariusz Jedrychowski 112 2-022

Metrology

Ahmed Cherif 72 R-005

Jean-Philippe Rigaud 72 R-009

Didier Glaude 100 R-023

Dominique Pugnat 72 R-013

Patrice Francon 72 R-009

Bartosz Bulat 72 R-013

Materials

Philippe Deweulf 376 R-015

Mickael Crouvizier 599 R-013

Mickael Meyer 599 R-013

Arthur Blaser 599 R-024

Anité Pérez 599 R-021

Alexander Lunt 599 R-007

Elisa Garcia-Tabarés 599 R-005

Ignacio Avilés 599 R-027

599 R-011

Ewelina Muszalska 599 R-024

Pablo Ortega 599 R-024

Adrià Gallifa 599 R-023

Josep Busom 599 R-005

Enrique Rodríguez 599 R-023

Karolina Bogdanowicz 599 R-024

ELISA GARCÍA-TABARÉS VALDIVIESO

• Slides were stored in an open air storage system from ~1985 to ~ 2013. Then, moved to a different building in a clean and dry room.

Appearance of the slides before the analysis

"Open air" drawers

	SAMPLE					
	1	2	3	4	5	6
SLIDE	Old	Old	Old	New	New	New
55	Probably	Probably	Probably	No	Yes	Yes
	No	Yes	Half	No	No	Yes (artif.)*

^{*} Some slides were treated ex-situ (water exposure and growth of artificial mold) to try to reproduce the lab conditions.

Optical microscopy

- Optical Microscope Keyence 600
- Mag. 1- 1 000x

Scanning Electron Microscopy

- Field Emission Gun (FEG)
- InLens, SE2, AsB detectors for imaging
- Oxford 50 mm² X Max EDS detector
- Mag. 12- 500 000x

Scanning Electron Microscopy

Secondary electron (SE):

Imaging, topography contrast

Back scattered electron (BSE):

Imaging, Chemical contrast

Energy Dispersive Spectroscopy (EDS):

Semi-quantitative chemical information

Energy Dispersive X-Ray Spectroscopy

- Analysis of X-rays emitted by the matter in response to being hit with charged particles
- Each element has a unique atomic structure allowing X-rays that are characteristic of an element's atomic structure to be identified uniquely from one another.
- Allow the elemental analysis or chemical characterization

Energy Dispersive X-Ray Spectroscopy

Energy Dispersive X-Ray Spectroscopy

- What can we analyse?
 - Identification of elements, for $Z \ge 4$ (Be)
 - Quantification
 - elements, for Z > 9 (F)
 - more than wt% 1 (depending on the element)
- What can we not or hardly analyse?
 - Elements with peaks overlapping (ΔE≤127 eV)
 - Quantification is limited for
 - Light elements
 - Not perfectly flat samples
 - Not homogeneous samples

RESULTS

RESULTS

	SAMPLE					
	1	2	3	4	5	6
SLIDE	Old	Old	Old	New	New	New
4	Probably	Probably	Probably	No	Yes	Yes
	No	Yes	Half	No	No	Yes (artif.)*

^{*} Some slides were treated ex-situ (water exposure and growth of artificial mold) to try to reproduce the lab conditions.

ELISA GARCÍA-TABARÉS VALDIVIESO

ELISA GARCÍA-TABARÉS VALDIVIESO

Results: Comparison

Sample 1	Sample 2	Sample 3
100.00m		
Sample 4	Sample 5	Sample 6
200.00µm		

CERN

Results: Electron Microscopy

Some reminders...

- ➤ The composition of the slides is not known. Historically there have been three major types of film base in use: nitrocellulose, cellulose acetate and polyester. **All of them are based on C and O**.
- ➤ EDS makes impossible to detect presence of elements below around 0.2 wt %, or light elements.
- > The following elements were found in all the samples: C, O, N, Al, S
- > F, Na, Ca was detected in most of the cases but in a very low concentration (lower than the detection limit).

OLD SLIDE

NEW SLIDE

No differences between mold/no mold

→ same composition if exposed to water

Results: Comparison

	Sample 1	Sample 2	Sample 3	
	OLD SLIDES			
Si	Yes	1	-/ Yes	
P	-	Yes	Yes/ -	
Cl	-	Yes	Yes/ -	
	100.05um			

Results: Comparison

	Sample 4	Sample 5	Sample 6	
	NEW SLIDES			
Si	Yes	Yes	Yes	
P	-	Yes	Yes	
Cl	-	Yes	Yes	
	200.00µm			

SUMMARY & CONCLUSIONS

- ✓ Optical and Chemical analysis on slides submitted to different storage conditions.
- ✓ Comparison with new slides treated in a different ways to reproduce conditions.
- ✓ Slides are carbon-based thus difficult to differentiate with a mold.
- ✓ Limitations with the tecnique for quantifying light elements (C, O).

	Case 1	Case 2	
	No degradation	Degraded	
ОМ	Clean appearance	Surface covered surface with a relief material.	
SEM	Chemical composition just based on C, O, Si and other traces.	P and Cl appear in the chemical composition of the slide.	

SUMMARY & CONCLUSIONS

- ✓ Optical and Chemical analysis on slides submitted to different storage conditions.
- ✓ Comparison with new slides treated in a different ways to reproduce conditions.
- ✓ Slides are carbon-based thus difficult to differentiate with a mold.
- ✓ Limitations with the tecnique for quantifying light elements (C, O).

Under these circumstances, and considering the limitations of the technique:

- ➤ Confirmed the presence of an organic material on some slides.
- ➤ It is not possible to precise the nature of the substance (require a different technique biology field)
- The appearance of this substance is related to the exposure of the slide to water. as a result, P and Cl appear in the EDS analyis.

UNDERSTANDING VOLMEUR ARTWORK WITH ELECTRON MICROSOPY

THANK YOU VERY MUCH FOR YOUR ATTENTION

elisa.garcia-tabares.valdivieso@cern.ch

Imaging - Secondary Electrons

- Secondary Electrons (SE)
 - They are ejected from the k-orbitals of the specimen atoms by inelastic scattering interactions with beam electrons
 - They have a low-energy (<50 eV)</p>

- Contrast given by topographic irregularities, roughness
 - SE quantity depends on the angle of the PE beam and the surface

Imaging - BackScattered Electrons

- Backscattered Electron (BSE)
 - Interaction between primary electrons from the beam and the nucleus of the atoms with a low lose of energy and a quasielastic reaction.

- Contrast given by Z
 - Heavy atoms emit more BSE than light atoms
 - The higher the Z, the brighter the image