

MD4830: Assessing Collimator Coating Robustness with Beam Scraping

<u>A. Mereghetti</u>, on behalf of the LHC Collimation Team F. Carra, A. Lechner

MD Merit

- In HiRadMat tests, Mo-coated MoGr jaw samples showed a resistance to beam impact better than that of Cu-coated samples:
 - Tests not aimed at assessing the on-set of damage but checking survival to failure scenarios (single-pass approach);
- Aim: to test endurance of the coating layers of the TCSPM.D4R7.B2 in a configuration closer to the operational one (multi-turn environment) than that of HiRadMad:
 - Induce damage on coating layer;
 - Assess with measurements a safe value of energy/power deposition in Mo layer;
- Direct consequences of measurements on:
 - Alignment procedures of Mo-coated TCSPM collimators, in case BLM-based procedure is followed (e.g. because BPMs are not temporarily usable)
 - Compare to loads on the Mo-layer in case of beam losses with minimum life times;

- Measurements performed scraping the ion beam (trains few bunches) at flat top injection with one jaw of the prototype TCSPM.D4R7.B2
 - Power deposition concentrate into the Mo-layer, thanks to scraping movement and use of ions (energy loss dominated by ionisation);
 - Scraping only a fraction of the beam allows to repeat the scraping action more than once with the same beam; Scraping the whole beam at injection allows to:
 - Have a good control on total amount of scraped beam;
 - Not depend on orbit jitters and/or variations of beam transverse distribution;
 - Inject quickly and re-test the jaw at another position of the 5th axis;
 - Configuration similar to alignment situation (apart from beam intensity!);

- Heating tests (lab) on Mo-coated MoGr samples (M. Taborelli et al.) showed no signs of coating peeling:
 - Jaw block with some thermal cycles:
 - Heated for 6h @400C;
 - UHV test, including bake-out of 48h@250C;
 - heated for 48h @400C: no signs of coating peeling;
 - UHV test, including bake-out of 48h@250C;
 - Small sample (10x10 mm²) @950C;
- Number of ions necessary to induce a given ∆T (@constant power!):

Endep map (Fluka) by A.Lechner&A.Waets with input (SixTrack) by A.Mereghetti, simulating full beam scraping @ 6.37 Z TeV

Number of impacting ions in 1 s Full Beam scraping @ In								
Temperature	C=500W/m2/K	>	C=5000W/m2/K	>	C=infinite			
500 C	3E8 ions		1.7E9 ions		4.5E9 ions			
1000 C	6E8 ions		3.55E9 ions	\backslash	1.15E10 ions			
Very bad contact (e.g. clamped contact with weak springs) Number of impacting ions in 20 ms Small scraping step @ F								
500 C	2.2E7 ions		7E7 ions		1 1E9 ions			
1000 C	4E7ions		1.3E8 ions		1.9E9 ions			

Average contact (e.g. clamped contact with screws or mediocre brazing)

Simulations (tracking + Endep)

Impacts loaded in Fluka for full 1200 **Total beam** 100 shower cascade simuation; intensity intensity 800 600 erage Mo strip energy deposition [GeV/cm³] 400 1.6x10⁶ fit: A=999.971, R0=5171.432, sig=1036.299 200 max(der): x=4135.134 Peak endep @ FT: 1.4x10[€] turns [] 1.3 10⁶ GeV/cm³ per ion 1.2x10⁶ 0.5 fit: A=999.971, R0=5171.432, sig=1036.299 GeV/rm³ max(der): x=4135.134, y=-0.585 1x10⁶ differential [] 800000 Peak endep @ Inj: -0.5Instantaneous $3.1 \ 10^5 \ \text{GeV/cm}^3 \ \text{per ion}$ 92 600000 beam loss rate I^{IIIIIIII} -1.0 400000 1000 2000 3000 4000 5000 6000 turns [] 200000 -50 -40 -30 -20 -10 10 Z [cm] A.Mereghetti Nov 2018

- Fluka-SixTrack coupling used to evaluate impact distribution at TCSPM.D4R7.B2:
 - Full beam scraping with upper jaw of TCSPM.D4R7.B2;
 - Gaussian beam (both x and y), ε_N =1.39 μ m, 6.37 Z TeV (monochromatic);
 - Due to jaw movement, all ions impact on the Mo coating layer (front face):
 - 5 μm max impact parameter;
 - Regular beam s visible in impact distribution on the other transverse plane;

LHC Collimation

Project

LHC Collimation

Energy/Power Deposition Overview

Item	Beam Type and Energy	Time domain	Beam Intensity	Energy/Power density
HiRadMat-35/-36	p@440GeV	Shot of 7.2 µs	288 bunches, ~1.2 10 ¹¹ p/bunch	(est) ~14 kJ/cm ³
Simulations	p@7TeV	12min BLT for 1-10s	HL-LHC beam parameters	300 W/cm ³ (most loaded TCSG)
	Pb@6.37Z TeV	20ms scraping step	2.2 10 ⁷ ions	(tot) 4.6 kJ/cm ³ (avg) 230 kW/cm ³
	Pb@450Z GeV	1s full beam scraping	3 10 ⁸ ions	(tot) 15 kJ/cm ³ (avg) 15 kW/cm ³

- Load on Mo coating during present test would sit in-between HiRadMat high-energy, fast event and expected regime of power deposition in case of drops of beam lifetime:
 - Good occasion to verify with beam that expected operational loads are within limits;
 - Test could reduce the range where onset of damage is found the range can be further reduced in future HiRadMat tests, if deemed necessary;
- To be noted that typical collimator manipulations during commissioning take place with a total beam intensity >3 10⁸ ions (or equivalent number of charges e.g. IR7 alignment on the night between 6th and 7th Nov 2018) → what if collimator expert accidentally scrapes full beam during setting up?
 - LMs are obtained losing typically few/some 10⁹ charges;

Rationale Behind Choices

- Why full-beam scraping:
 - Good control on total beam intensity scraped it coincides with the stored one;
 - Test cannot be jeopardized by orbit jitters or local changes in transverse beam distribution;
- Why injection energy?
 - Possibility to quickly re-inject and be back in business rapidly;
 - Much lower probability to get prematurely dumped by IR7 BLMs;
- How confident are we that coating will not suffer?
 - Endep map obtained with Mo density of ~10 g/cm³, instead of ~7.5 g/cm³ (C.Accettura);
 - With $\varepsilon_N = 1.7 \mu m$, full beam scraping (covering 3.5 σ) takes 1.4s vs 1s;
 - Worst value of conductance of Mo-MoGr interface should be closer to 5000 W m⁻² K⁻¹ rather than to 500 W m⁻² K⁻¹;

Losses during test

- During MD1653 (BLM response in IR7 and at TCLs), a LM was taken with TCSPM.D4R7.B2 as primary collimator – p@450GeV!
- No BLM found close to the threshold within a factor 100;

Loss Map - background subtracted - normalised to value at TCSPM.D4R7.B2 B2V - 2018-06-16 09:07:54.777000

Procedure

Main activities:

- Inject a 4-bunch train of ions; 1.
 - get normaised emittance with wire scan and BSRT;
 - Get rid of 2 bunches, to attain 3 10⁸ ions;
 - If remaining intensity is still too high, gently blow up remaining bunches and induce tiny little losses to attain 3 10⁸ ions:
- Centre collimator with BPMs; 2.
- Align TCPSM 5th axis to Mo layer and scrape the whole beam with upper jaw: 3.
 - 1st spot: aim at 400C 5th axis position: 9.87 mm; 1.
- Repeat previous steps with different 5th axis position: 4.
 - 2nd spot on Mo: 5th axis position: 7.87 mm; 1.
 - 1st spot on MoGr: 5th axis position: 3 mm; 2.
 - 2nd spot on MoGr: 5th axis position: -3 mm; 3.

Tests only B2 (TCSPM available only there);

Still to finalise:

Actual procedure inspection to be finalized with EN/STI; 1.

Requests: 6h MD time – should be enough for 4 scrapings; Measurements at injection energy; ٠

Back-up Slides