
Cocotb: a Python-based digital logic verification framework

Ben Rosser

University of Pennsylvania

December 11, 2018

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 1 / 41

Introduction

Cocotb is a library for digital logic verification in Python.
Coroutine cosimulation testbench.
Provides Python interface to control standard RTL simulators (Cadence, Questa, VCS, etc.)
Offers an alternative to using Verilog/SystemVerilog/VHDL framework for verification.

At Penn, we chose to use cocotb instead of UVM for verification last summer.
This talk will cover:

What cocotb is, what its name means, and how it works.
What are the potential advantages of cocotb over UVM or a traditional testbench?
What has Penn’s experience been like using cocotb?

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 2 / 41

Introduction: Disclaimer

Disclaimer: I am not a UVM expert!
My background is in physics and computer science, not hardware or firmware design.
During my first year at Penn, I spent some time trying to learn UVM, but we decided to
try out cocotb soon afterward.
I can talk about what made us want an alternative to UVM, but I cannot provide a
perfect comparison between the two.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 3 / 41

What is Cocotb?

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 4 / 41

Approaches to Verification

Why not just use Verilog or VHDL for verification?
Hardware description languages are great for designing hardware or firmware.
But hardware design and verification are different problems.
Using the same language for both might not be optimal.
Verification testbenches are software, not hardware.
Higher level language concepts (like OOP) are useful when writing complex testbenches.

Two possible ways to improve the situation:
Add higher level programming features to a hardware description language.
Use an existing general purpose language for verification.

SystemVerilog is the first approach: simulation-only OOP language features.
UVM (Universal Verification Methodology) libraries written in SystemVerilog.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 5 / 41

Verification using SystemVerilog

But as a result, SystemVerilog is a
very complicated language.
The SystemVerilog spec is over a
thousand pages!
Language has 221 keywords; compare
to C++’s 83.
Powerful, but takes a while to learn.
Grad students unlikely to have prior
SystemVerilog experience.

http://www.fivecomputers.com/
language-specification-length.html

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 6 / 41

http://www.fivecomputers.com/language-specification-length.html
http://www.fivecomputers.com/language-specification-length.html

Verification using UVM

UVM has similar complexity issues.
There are over 300 classes in UVM.
Lots of ways to do the same thing.
Again, very powerful, but very difficult to
get started.
My personal experience:

Followed online tutorials for a few weeks,
but barely scratched the surface.
Found official documentation a bit
lacking.
Tried using Doulos resources on UVM,
but this only took me so far. UVM class hierarchy, taken from tutorial:

https://www.youtube.com/watch?v=NlUii8N-VXc

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 7 / 41

https://www.doulos.com/knowhow/sysverilog/uvm/
https://www.youtube.com/watch?v=NlUii8N-VXc

Verification using Python

The SV/UVM approach is powerful, but complicated.
cocotb’s developers, Chris Higgs and Stuart Hodgson, tried a different approach:

Keep the hardware description languages for what they’re good at– design!
Use a high-level, general purpose language for developing testbenches.
Object oriented programming is much more natural in general purpose languages!

They picked Python as their language of choice:
Python is simple (only 23 keywords) and easy to learn, but very powerful.
Python has a large standard library and a huge ecosystem; lots of existing libraries.
Python is well documented and popular: lots of resources online.

For Penn’s purposes, Python was good for another reason:
Verification tasks being given to graduate students (e.g. as qualification tasks).
All ATLAS grad students and postdocs should know at least some Python!

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 8 / 41

Cocotb: Basic Architecture

How does cocotb work?
Design under test (DUT) runs in standard
simulator.
cocotb provides interface between simulator
and Python.
Uses Verilog Procedural Interface (VPI) or
VHDL Procedural Interface (VHPI).
Python testbench code can:

Reach into DUT hierarchy and change values.
Wait for simulation time to pass.
Wait for a rising or falling edge of a signal.

VPI/VPHI
Interface

RTL Simulator

Cocotb

Python Test Python Test

DUT

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 9 / 41

Basic Example - RTL and Python
Let’s walk through an example of cocotb, for a simple MUX design.

// example_mux.v
// MUX taken from HCCStar design (ITk Strips)
module example_mux(

output wire we_lp_muxed_o,
input wire readout_mode_i,
input wire L0_i,
input wire we_lp_i

);

// Switch between inputs depending on
// value of readout mode.
assign we_lp_muxed_o =
readout_mode_i ?
L0_i : we_lp_i;

endmodule

mux_tester.py
import cocotb
from cocotb.triggers import Timer
from cocotb.result import TestFailure

@cocotb.test()
def mux_test(dut):
dut.L0_i <= 0
dut.we_lp_i <= 0

dut.readout_mode_i <= 1
dut.L0_i <= 1
yield Timer(1, "ns")
if dut.we_lp_muxed_o != 1:

raise TestFailure("Failure!")

dut.readout_mode_i <= 0
yield Timer(1, "ns")
if dut.we_lp_muxed_o != 0:

raise TestFailure("Failure!")
Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 10 / 41

Basic Example - Python Annotated

A few key points in the testbench code:
@cocotb.test() decorator declares a
function as a test.
The variable dut represents the hierarchy.
dut.L0_i <= 0 is shorthand to assign to
a RTL variable (dut.LO_i.value = 0).
yield Timer(1, "ns") waits 1 ns for
the simulator to advance.
raise TestFailure fails the test if the
MUX is not working.

mux_tester.py
import cocotb
from cocotb.triggers import Timer
from cocotb.result import TestFailure

@cocotb.test()
def mux_test(dut):
dut.L0_i <= 0
dut.we_lp_i <= 0

dut.readout_mode_i <= 1
dut.L0_i <= 1
yield Timer(1, "ns")
if dut.we_lp_muxed_o != 1:

raise TestFailure("Failure!")

dut.readout_mode_i <= 0
yield Timer(1, "ns")
if dut.we_lp_muxed_o != 0:

raise TestFailure("Failure!")

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 11 / 41

Basic Example - Makefile

Cocotb projects each need a Makefile to specify which files to include in simulation.
Below is a Makefile for the above example.

SIM ?= ius

MODULE = mux_tester
TOPLEVEL = example_mux
TOPLEVEL_LANG ?= verilog

EXTRA_ARGS =

VERILOG_SOURCES = ../rtl/example_mux.v
VHDL_SOURCES =

include $(COCOTB)/makefiles/Makefile.inc
include $(COCOTB)/makefiles/Makefile.sim

MODULE, TOPLEVEL control which Python,
RTL module to instantiate.
TOPLEVEL_LANG can be Verilog or VHDL.
EXTRA_ARGS allows extra arguments to be
passed to simulator.
SIM sets which simulator to use; ius is
Cadence.
VERILOG_SOURCES and VHDL_SOURCES:
RTL files to include.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 12 / 41

Running the Example
How do you actually run this? Just type make! The simulator will start and run the tests.

0.00ns INFO Running on ncsim(64) version 15.20-s046
0.00ns INFO Python interpreter initialised and cocotb loaded!
0.00ns INFO Running tests with Cocotb v1.0.1 from /tape/cad/cocotb/cocotb-20171128
0.00ns INFO Seeding Python random module with 1544025098
0.00ns INFO Found test mux_tester.mux_test
0.00ns INFO Running test 1/1: mux_test
0.00ns INFO Starting test: "mux_test"

Description: None
3.00ns INFO Test Passed: mux_test
3.00ns INFO Passed 1 tests (0 skipped)
3.00ns INFO ***

** TEST PASS/FAIL SIM TIME(NS) REAL TIME(S) RATIO(NS/S) **

** mux_tester.mux_test PASS 3.00 0.00 1005.35 **

3.00ns INFO ***
** ERRORS : 0 **

** SIM TIME : 3.00 NS **
** REAL TIME : 0.01 S **
** SIM / REAL TIME : 335.53 NS/S **

3.00ns INFO Shutting down...
Simulation complete via $finish(1) at time 3 NS + 0
ncsim> exit

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 13 / 41

Cosimulation: Triggers

Design and testbench simulated independently: this is cosimulation.
Communication through VPI/VHPI interfaces, represented by cocotb ”triggers”.
When the Python code is executing, simulation time is not advancing.
When a trigger is yielded, the testbench waits until the triggered condition is satisfied
before resuming execution.
Available triggers include:

Timer(time, unit): waits for a certain amount of simulation time to pass.
Edge(signal): waits for a signal to change state (rising or falling edge).
RisingEdge(signal): waits for the rising edge of a signal.
FallingEdge(signal): waits for the falling edge of a signal.
ClockCycles(signal, num): waits for some number of clocks (transitions from 0 to 1).

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 14 / 41

Modifying the Hierarchy

Since Python and RTL are
co-simulated, easy to reach into
the hierarchy.
The Python testbench can read
or change the value of any
internal signal.
Makes simulation of single event
upsets very simple!
Example shows how value of
internal signal could be read
(and changed).

import cocotb
from cocotb.triggers import RisingEdge

@cocotb.test()
def test(dut):

yield RisingEdge(dut.clk)

Access value of internal signal.
current = int(dut.submodule.important.value)

Change it, see what happens!
dut.submodule.important <= (not current)
yield RisingEdge(dut.clk)

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 15 / 41

Including RTL in a Testbench

Important point: it is still possible to have
RTL components of testbench!
Simply write a Verilog or VHDL ”wrapper”
top-level:

Instantiate the actual design being tested,
along with other components for testing.
Modify TOPLEVEL in Makefile to point at the
wrapper.

Must use trigger interface to communicate–
not possible to directly call procedures.
But still useful for low-level pieces of testing,
or assertions, or to include existing code.

VPI/VPHI
Interface

RTL Simulator

Cocotb

Python Test Python Test

RTL Wrapper

Actual
Design

RTL Testbench
Components

“DUT”

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 16 / 41

Post-Synthesis Simulations

Cocotb can be used for post-synthesis simulations too!
Can use the wrapper approach to load timing constraints (SDF) files on demand.
Example: post-synthesis simulation can be launched with make SIM_MODE=synthesis.
Makefile has been modified to check this variable when deciding what to do.

module Wrapper();
initial begin
`ifdef USE_SYN_SDF

$sdf_annotate("timing.sdf",
Wrapper.DUT,
"",
"sdf.log");

`endif
end
// Declare DUT.

endmodule

Set "TOPLEVEL" to point at the wrapper.
TOPLEVEL = Wrapper
VERILOG_SOURCES = Wrapper.v

ifeq ($(SIM_MODE), synthesis)
VERILOG_SOURCES += synthesis_netlist.v
EXTRA_ARGS += -define USE_SYN_SDF

else
Do normal RTL simulation
Add RTL files to VERILOG_SOURCES.

endif

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 17 / 41

Coroutines

Cocotb uses a cooperative multitasking architecture.
Tests can call other methods and functions, just like normal Python.
If those methods want to consume simulation time, they must be coroutines.

In cocotb, coroutines are just functions
that obey two properties.
Decorated using the @cocotb.coroutine
decorator.
Contain at least one yield statement,
yielding another coroutine or trigger.

import cocotb
from cocotb.triggers import RisingEdge

@cocotb.coroutine
def test_helper(dut):

dut.member <= 1
yield RisingEdge(dut.clk)

@cocotb.test()
def test(dut):

yield test_helper(dut)

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 18 / 41

Forking Coroutines

Coroutines can be yielded, but they can also be forked to run in parallel.
This allows the creation of something like a Verilog always block.
Key to creating complex testbenches: start up monitors, run them in the background.

module tb;

wire clk;

always @(posedge clk) begin
// Do something.

end

endmodule

import cocotb
from cocotb.triggers import RisingEdge

@cocotb.coroutine
def always_block(dut):

while True:
yield RisingEdge(dut.clk)
Do something.

@cocotb.test()
def test(dut):

Start clock.
thread = cocotb.fork(always_block(dut))

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 19 / 41

Joining Forked Coroutines

Unlike always blocks, it is possible to join
a forked coroutine.
Calling .join() returns a trigger that can
be yielded.
Will wait until the coroutine finishes
executing.
Also possible to kill a coroutine
immediately by calling .kill().

import cocotb
from cocotb.triggers import RisingEdge, Timer

@cocotb.coroutine
def always_block(dut):

while True:
yield RisingEdge(dut.clk)
Do something.

@cocotb.test()
def test(dut):

Start clock.
thread = cocotb.fork(always_block(dut))
yield thread.join()

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 20 / 41

Yielding Multiple Triggers

Example on the previous slide will not
actually terminate.
But we can fix that!
Yield a list of triggers (or coroutines)
instead of just one.
Testbench will wait until one of the
triggers fires.
This example will now continue after
100 ns of simulation time.

import cocotb
from cocotb.triggers import RisingEdge, Timer

@cocotb.coroutine
def always_block(dut):

while True:
yield RisingEdge(dut.clk)
Do something.

@cocotb.test()
def test(dut):

Start clock.
thread = cocotb.fork(always_block(dut))
yield [thread.join(), Timer(100, "ns")]

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 21 / 41

Communicating with Coroutines

For building complex testbenches: necessary to pass information between forked
coroutines.
A couple different ways to do this: can use the Event() trigger:

A coroutine can yield event.wait() to block until another coroutine calls event.set().
Data can be passed between coroutines by setting event.data.

A simpler way: use classes:
Functions in classes can be made coroutines and forked.
The class will be accessible from both the main and the forked coroutine.

Combining these techniques: can create advanced testbench components like drivers,
monitors.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 22 / 41

Coroutines and Classes

Here’s a very simple example of how to
build a driver using coroutines.
Uses a Python class (SimpleDriver).
Once the drive function starts, on every
clock it sets a port on the DUT equal to
self.value.
This flag can then be set from the test,
outside the coroutine.
Contrived example; a more sophisticated
driver could implement a serial protocol,
or have a built-in queue for commands.
Example of how to build up more complex
testbenches!

import cocotb
from cocotb.triggers import RisingEdge, FallingEdge

class SimpleDriver:

def __init__(self, dut):
self.dut = dut
self.value = 0

@cocotb.coroutine
def drive(self):

while True:
yield RisingEdge(self.dut.clk)
self.dut.data <= self.value

@cocotb.test()
def test(dut):

driver = SimpleDriver(dut)
cocotb.fork(driver.drive())
yield FallingEdge(dut.clk)
driver.value = 1

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 23 / 41

Penn Experience

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 24 / 41

Aside: The ITk Strips Project
Penn’s engineering group is involved with the ATLAS ITk Strips upgrade project:

Brand-new inner tracker for the HL-LHC, scheduled to be installed in 2026.
The ITk Strips TDR (public): https://cds.cern.ch/record/2257755

We are helping design, build, and test the front-end readout electronics.
Each strips module will have several custom ASICs for readout, control, and monitoring.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 25 / 41

https://cds.cern.ch/record/2257755

ITk Strips ASICs

Three ASICs being designed:
ABCStar (ATLAS Binary Chip): reads in
hits from the sensors and clusters them.
Responds to readout commands.
HCCStar (Hybrid Control Chip): controls
a group of ABCStars (a ”hybrid”) and
combines their outputs into a single data
stream.
AMACv2 (Autonomous Monitor And
Control): one per module, sits on the
power board.
Penn heavily involved in the last two.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 26 / 41

ITk Strips: HCCStar and ABCStar

Rough block diagrams of the hybrid,
containing HCCStar and two
ABCStars.
Other groups responsible for
verification of the ABCStar.
Penn responsible for verification of
the HCCStar.
Additional verification goal: simulate
both chips together.

”Star network” architecture; ABCs talk directly to HCC.
Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 27 / 41

ITk Strips: AMACv2

Penn responsible for design and verification of the AMAC as well.
Rough block diagram of the AMACv1; Penn began work on new AMACv2 in August 2017.
Many more analog blocks than the HCCStar.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 28 / 41

ITk Verification - Using Cocotb

We began HCCStar verification in the spring of 2017.
Considered what approach to adopt for verification:

Wanted to use something more sophisticated than a traditional Verilog testbench.
Considered UVM: found it very powerful, but difficult to get started.
Decided to look for alternatives before embracing UVM.

Bill Ashmanskas and I discovered cocotb! Seemed to be what we were looking for:
Easier to get students and postdocs involved, due to familiarity with Python.
Much simpler to get started in comparison to UVM.
Supported the Cadence Incisive simulator (which we were using for this project).

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 29 / 41

Initial ITk Verification

Began by writing simple unit tests for existing HCCStar blocks; slowly built up more
complex testbench structures over the summer of 2017.
Used Python classes for testbench components, like monitors and drivers.
Used libraries (bitarray and bitstring) for manipulating fixed length bit vectors.
Used numpy and scipy libraries to generate random data.
Created Python models of data flow to check the ASIC against the specification.
Used a similar approach to do AMACv2 verification in fall of 2017.
Once the AMAC design was submitted in mid-October, work resumed on the HCCStar.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 30 / 41

https://pypi.org/project/bitarray/
https://pypi.org/project/bitstring/
https://www.numpy.org/
https://www.scipy.org/

Complete HCCStar Verification

Rough sketch of HCC Testbench.
Light blue blocks written in Python.

By early 2018, had built up complete
HCCStar testbench.
Wrote Python implementation of
communications protocols.
Wrote Python model of ABCStar to
produce physics data in response to
commands.
All tests made to be self-checking;
mismatches between expected, actual
outputs automatically flagged.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 31 / 41

Hybrid Verification

Important goal: simulate HCCStar with
RTL version of ABCStar!
Designed testbench so that Python or
RTL ABCStars could be used.
Ended up with more complex makefile to
handle multiple cases:

Different make targets to start different
types of simulations.
Could switch between hybrid and
standalone top-level block.
Could also switch between hybrid and
standalone testbench.

We found bugs that the ABCStar verification (SystemVerilog without UVM) missed!

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 32 / 41

Hybrid Simulations

Hybrid verification also included
simulations of realistic operating
conditions.
Trigger rate, expected occupancy, and
runtime could all be configured.
Simulations were sometimes ran for several
days– caught several rare problems!
Used matplotlib library to produce
performance plots from inside the
testbench. Example plot from a run of the hybrid testbench.

Shows how long it takes for the system to respond to
a readout request.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 33 / 41

https://matplotlib.org/

Continuous Integration and Code Coverage

Ran all our tests nightly using Continuous Integration (CI) system.
cocotb test results stored in XML file; wrote script to process this.
Also generated coverage reports; Coverage data (and monitoring plots!) available online:
http://www.hep.upenn.edu/asic_CI/

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 34 / 41

http://www.hep.upenn.edu/asic_CI/

ITk Verification - Overview

Overall, the cocotb approach to verification was very successful.
Easy for myself, postdoc Jeff Dandoy, and grad student Joe Mullin to get involved.
Wrote many tests for the HCCStar, hybrid, and AMAC simulations since last fall:

84 tests for the HCCStar.
32 tests for the hybrid (HCCStar and ABCStar).
30 tests for the AMAC.

Many critical issues were found and fixed!
According to JIRA, 65 tickets relevant to the HCCStar of varying severity have been
resolved. (More bugs were reported in person or via email, so this is a lower bound).
Continuous integration helped us catch lots of problems as they happened.

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 35 / 41

Cocotb - Upstream Issues

Were there any problems with the cocotb approach to verification?
Biggest obstacle we ran into: low upstream activity.
The cocotb community has been growing, but development had stagnated.
We quickly ended up depending on a few unofficial patches to fix bugs.
Some newer features were missing from cocotb documentation; we sometimes had to look
at the source code to learn things.
Were able to make things work, but concerning for long-term health of the project.
Good news: this has been improving over the last few months!

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 36 / 41

New Community Activity

Several new maintainers
appointed.
One of them is an ATLAS
member! Tomasz Hemperek,
from the University of Bonn.
New community development
guidelines agreed upon.
A lot of recent activity working
through the backlog of issues
and patches.

https://github.com/potentialventures/cocotb/pulse/monthly

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 37 / 41

https://github.com/potentialventures/cocotb/pulse/monthly

Other Problems and Solutions

A couple of other problems we ran into, and how we worked around them:
The simulator crashed when we tried to load pyROOT from the testbench:

Seems to be a problem to do with Cadence + ROOT; worked for other simulators.
Ended up just using numpy/scipy/matplotlib instead.

How can you pass configuration to the testbench?
We ended up with a large Makefile– around 200 lines long!
Heavy use of environment variables to pass configuration to make and to tests.
Several different make targets for different simulation setups (RTL, post-synthesis, post-PNR
for standalone HCC and hybrid) testbenches).

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 38 / 41

Conclusion

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 39 / 41

Conclusion

Cocotb is a powerful tool for verification in a high-level programming language:
More powerful than a traditional Verilog testbench.
Easier to get started with than a SystemVerilog or UVM testbench.

Cosimulation approach means that RTL simulator still used under the hood:
Testbenches can contain a mixture of Python and RTL.
Cocotb testbenches can be used for post-synthesis simulations as well.

Penn succcessfully used cocotb for verifying ASICs for the ITk Strips upgrade project.
We are planning to continue using cocotb for future projects!

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 40 / 41

Thanks!

Thank you for your attention!
People at Penn group who have worked on the verification effort:

HEP Instrumentation Group:
Bill Ashmanskas
Paul Keener
Adrian Nikolica

Graduate students:
Ben Rosser
Joe Mullin

Postdocs:
Jeff Dandoy

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 41 / 41

Backup

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 1 / 2

Cocotb Resources

Cocotb project repository: https://github.com/potentialventures/cocotb
Official cocotb documentation: https://cocotb.readthedocs.io/en/latest/
Mailing list: https://lists.librecores.org/listinfo/cocotb
Other talks given about cocotb:
https://github.com/potentialventures/cocotb/wiki/Further-Resources
Lots of examples can be found in the documentation and repository!

Ben Rosser (Penn) Cocotb for CERN Microelectronics December 11, 2018 2 / 2

https://github.com/potentialventures/cocotb
https://cocotb.readthedocs.io/en/latest/
https://lists.librecores.org/listinfo/cocotb
https://github.com/potentialventures/cocotb/wiki/Further-Resources

	Introduction
	What is Cocotb?
	Why Python?
	Cocotb
	Example
	Cosimulation
	Coroutines

	Penn Experience
	ITk Strips
	Penn Verification
	Lessons Learned

	Conclusion
	Backup
	Resources

