
Giulio Eulisse (CERN)

A REMINDER: ALICE IN RUN 3

FLP

FLP

EPN

FLP

De
te

ct
or

EPN

EPN

≳3TB/s
up to 500GB/s

...

ReadOut

Synchronous  
reconstruction  

(data reduction)

On-site  
storage

EPN / Grid

...

Asynchronous  
reconstruction  

(improved conditions)

EPN / Grid

EPN / Grid Permanent 
storage

�2

up to  
100GB/s

EPN input data quantum is the
"timeframe": 23ms of continuous

readout data. ~10GB

EPNEPNEPNEPN

BEAM ON: data reduction BEAM OFF: improved calibration

epn0...M
flp1...N

flp0

TRANSPORT LEVEL SYSTEM ARCHITECTURE

Shared Memory

Ne
tw

or
k

ba
se

d
M

es
sa

ge
 P

as
si

ng

Shared Memory

HW
Readout
Module

SubTimeframe
building device

EPN
Receiver

Pre -
clusterization

Local
reconstruction

Reconstruction
step 1

Reconstruction
step 2

�3

ALICE O2 SOFTWARE FRAMEWORK IN ONE SLIDE: FAIRMQ

�41See "ALFA: ALICE-FAIR new message queuing based framework" by Mohammad

Transport Layer: ALFA / FairMQ1

➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Supports both Ethernet and InfiniBand.
➤ Shared memory backend for reduced memory usage and improved performance on single

node.

https://indico.cern.ch/event/587955/contributions/2938082/

➤ Separation of Concerns: From the architectural point of view, it allows ALICE to factor out
data transport from the system description.

➤ Performant transport: collaboration with FAIR experiments and GSI allows sharing of
highly skilled engineers to work on the performance critical parts related to transport.

WHY FAIRMQ?

HW
Readout
Module

SubTimeframe
building device

flp0

flp1...N

Pre - clusterization

Local reconstruction

EPN Receiver Reconstruction
step 1

Reconstruction
step 2

epn0..M

�5

Transport Layer: ALFA / FairMQ1

➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Supports both Ethernet and InfiniBand.
➤ Shared memory backend for reduced memory usage and improved performance on single

node.

ALICE O2 SOFTWARE FRAMEWORK IN ONE SLIDE

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for

TPC reconstruction on the GPU.
➤ ROOT based serialisation. Useful for QA and final results.
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with other

tools.

�6

O2 DATA MODEL

Reconstruction Step 2PAYLOAD

HEADER

ORIGIN
DESCRIPTION

SUBSPECIFICATION
TIMESTAMP

...
HEADER

HEADER

PAYLOAD

Messages being exchanged in O2 have a (header,
payload) structure where the header describes
the contents of the subsequent payload.

➤ Origin represents the Detector or Component
that first created the message (e.g. TPC)

➤ Description is the data type of the payload
(e.g. CLUSTERS),

➤ Subspecification can be used to encode extra
information (e.g. TPC sectors)

➤ Timestamp / Timerange indicates the
Timeframe it belongs to.

Reconstruction Step 1

�7

ALICE O2 SOFTWARE FRAMEWORK IN ONE SLIDE

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

Data Processing Layer (DPL)

Abstracts away the hiccups of a distributed system, presenting the user a familiar "Data
Flow" system.
➤ Reactive-like design (push data, don't pull)
➤ Declarative Domain Specific Language for implicit workflow definition.
➤ Integration with the rest of the production system, e.g. Monitoring, Logging, Control.
➤ Laptop mode, including graphical debugging tools.

�8

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for

TPC reconstruction on the GPU.
➤ ROOT based serialisation. Useful for QA and final results.
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with with

other tools.

DPL IMPLICIT WORKFLOW DEFINITION

HW
Readout
Module

SubTimeframe
building device

flp0

flp1...N

Pre -
clusterization

Local
reconstruction

EPN Receiver Reconstruction step 1 Reconstruction step 2

epn0..M

�9

Pre - clusterization Local reconstruction Reconstruction step 1
TracksUnfiltered digits

Filtered digits
Clusters

Reconstruction step 2

DPL converts a physics oriented
implicit description of the workflow

to an explicit FairMQ topology.

Noisy channel mask

CCDB

DPL Workflow 1 DPL Workflow 2

FairMQ topology

DPL: BUILDING BLOCK
A DataProcessorSpec defines a pipeline
stage as a building block.

➤ Specifies inputs and outputs in terms of
the O2 Data Model descriptors (physics
types, not sockets and ports).

➤ Provide an implementation of how to act on
the inputs to produce the output.

➤ Advanced user can express possible data or
time parallelism opportunities.

a b

AlgorithmSpec

DataProcessorSpec

InputSpec OutputSpec

�10

DATA PROCESSING LAYER: IMPLICIT TOPOLOGY

B

C

B D
E

D

C E

Data Processing Layer

�11

�12

Debug GUI

�13

4 FairMQ devices  
exchanging messages in a

diamond topology

�14

GUI shows state of the various
message queues in realtime.

Different colors mean different
state of data processing.

Clicking on a node provides the log

�15

An embedded metrics viewer provides in
GUI feedback on DPL & user defined

metrics.
Multiple backends supported, including
InfluxDB (i.e. for ALICE data taking) and

Monalisa (Grid deployments).

�16

 1 #include "Framework/runDataProcessing.h"
 2
 3 using namespace o2::framework;
 4
 5 AlgorithmSpec simplePipe(std::string const &what) {
 6 return AlgorithmSpec{ [what](ProcessingContext& ctx) {
 7 auto bData = ctx.outputs().make<int>(OutputRef{what}, 1);
 8 } };
 9 }
 10
 11 WorkflowSpec defineDataProcessing(ConfigContext const&specs) {
 12 return WorkflowSpec{
 13 { "A", Inputs{}, {OutputSpec{{"a1"}, "TST", "A1"}, OutputSpec{{"a2"}, "TST", "A2"}},
 14 AlgorithmSpec{
 15 [](ProcessingContext &ctx) {
 16 auto aData = ctx.outputs().make<int>(OutputRef{ "a1" }, 1);
 17 auto bData = ctx.outputs().make<int>(OutputRef{ "a2" }, 1);
 18 }
 19 }
 20 },
 21 { "B", {InputSpec{"x", "TST", "A1"}}, {OutputSpec{{"b1"}, "TST", "B1"}}, simplePipe("b1")},
 22 { "C", {InputSpec{"x", "TST", "A2"}}, {OutputSpec{{"c1"}, "TST", "C1"}}, simplePipe("c1")},
 23 { "D", {InputSpec{"b", "TST", "B1"}, InputSpec{"c", "TST", "C1"}}, Outputs{},
 24 AlgorithmSpec{[](ProcessingContext &ctx) {}}
 25 }
 26 };
 27 }

The previous example (GUI
included) requires  
27 user's SLOC.

�17

DATA PROCESSING LAYER: HOW

�18

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{
 "A",
 Inputs{
 InputSpec{"a", "TPC", "CLUSTERS"}
 },
 Outputs{
 OutputSpec{{"b"}, "TPC", "TRACKS"}
 },
 AlgorithmSpec{
 [](ProcessingContext &ctx) {
 auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1);
 }
 }
}

DATA PROCESSING LAYER: HOW

�19

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{
 "A",
 Inputs{
 InputSpec{"a", "TPC", "CLUSTERS"}
 },
 Outputs{
 OutputSpec{{"b"}, "TPC", "TRACKS"}
 },
 AlgorithmSpec{
 [](ProcessingContext &ctx) {
 auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1);
 }
 }
}

DATA PROCESSING LAYER: HOW

�20

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{
 "A",
 Inputs{
 InputSpec{"a", "TPC", "CLUSTERS"}
 },
 Outputs{
 OutputSpec{{"b"}, "TPC", "TRACKS"}
 },
 AlgorithmSpec{
 [](ProcessingContext &ctx) {
 auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1);
 }
 }
}

DATA PROCESSING LAYER: HOW

�21

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{
 "A",
 Inputs{
 InputSpec{"a", "TPC", "CLUSTERS"}
 },
 Outputs{
 OutputSpec{{"b"}, "TPC", "TRACKS"}
 },
 AlgorithmSpec{
 [](ProcessingContext &ctx) {
 auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1);
 }
 }
}

REACTIVE DESIGN
Data is described as pushed through the pipeline.

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

�22

REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

Algorithm is dispatched
when all the inputs are ready

�23

REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

Different inputs can
have different
lifetimes. E.g.

conditions.

�24

REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5 t4

t

t0 t1 t2 t3 t4 t5Timeframe Input A

When data is "late"  
DPL can (optionally)

drop it.

�25

B

C

B D
E

D

C E

Compiles into a
single executable

for the laptop user.

<topology id="o2-dataflow">
 <decltask id="A">
 <exe reachable="true">../bin/o2DiamondWorkflow --id A ...</exe>
 </decltask>
 <decltask id="B">
 <exe reachable="true">../bin/o2DiamondWorkflow --id B ...</exe>
 </decltask>
 <decltask id="C">
 <exe reachable="true">../bin/o2DiamondWorkflow --id C ...</exe>
 </decltask>
 <decltask id="D">
 <exe reachable="true">../bin/o2DiamondWorkflow --id D ...</exe>
 </decltask>
</topology>

Generates DDS
configuration

for deployment
on a analysis
facility farm.

..or it generates the configuration to
integrate with O2 Control system.

�26

DPL as a workflow
definition language:
support for multiple

deployment strategies.

DPL INTEGRATION: CONTROL
Using DPL will guarantee easy deployment in the synchronous workflow (Teo).

�27

INTEGRATION WITH DIFFERENT SUBSYSTEMS
Monitoring infrastructure

Sending metrics to the Debug GUI and to the Monitoring infrastructure is now done with the same code:
ctx.services().get<Monitoring>().send({ 1, "metric-name" });

Deployment target will pick up the correct backend.

InfoLogger

Log messages (e.g. those created via FairLogger LOG() macro) will be redirected to the specified InfoLogger back-end (or the
Debug GUI).

O2 Control & Grid (preliminary)

DPL generates configuration templates which are suitable to be imported in the O2 Control system or in DDS (e.g. for Grid
deployments).

Configuration Database (coming soon)

DPL already provides a way to specify configurable options. At the moment these are only mapped to command-line arguments
but it's in the plan to fully expose them via FairMQProgOptions and integrate DPL with the Configuration Database.

�28

MISC RECENT DEVELOPMENTS
Special Input / Output types

Not all data is part of the main data-flow (e.g. the timeframes) but we will have timers (e.g. to
trigger histograms snapshots in QA), condition objects (which will come from / be stored in CCDB
via a REST API call). Out-of-band input / output types are now supported and effort is ongoing to
integrate them with different backends.

Support for Apache Arrow & RDataFrame

We now have initial support for Apache Arrow backed messages, which paves the way to
integration with external tools like Pandas and TensorFlow, or even ROOT, via RDataFrame.

�29

COMING UP NEXT
PR #1483 is paving the way for a major refactoring which will provide:

➤ More compact syntax to specify inputs

From:

{InputSpec{"clusters", "TPC", "CLUSTERS", 0},  
 InputSpec{"tracks", "TPC", "TRACKS", 0}, ...}
to:

select("clusters:TPC/CLUSTERS/0;tracks:TPC/TRACKS/0")

➤ Wildcards when selecting input data:

select("clusters:$1/CLUSTERS/0;tracks:$1/TRACKS/0")

➤ Different time granularities

select("test:A/D1/0%Timeframe;test:A/D2/0%Run")

�30

COMING UP AFTER
Shared Services

DataProcessorSpec API will be extended to request shared services (e.g. Geometry, Magnetic Field) which
will be shared between all instances running on the same NUMA-domain.

Workflow merging

Ability to merge separate workflows into a larger ones and run it / generate the appropriate deployment
configuration. E.g. digitization + reconstruction.

Resource limiting

Resources like CPUs and memory will be modelled as tokens exchanged by various components so that
only a limited number of them can be active at the same time. Useful in particular for Grid workflows
where we might have a very small number of cores per job.

�31

MORE INFO
Design document and cookbook  
Available from our doxygen web pages https://aliceo2group.github.io/AliceO2

Examples 
AliceO2/Framework/Core/test and AliceO2/Framework/TestWorkflows

WP4 mailing egroup 
alice-o2-wp4@cern.ch

�32

https://aliceo2group.github.io/AliceO2

WP12

ALICE Framework showcased at
CHEP2018 Sofia. Establishing the

Data Processing Layer (DPL) as
integration framework for ALICE

data-processing needs.

WP8

Digitization in DPL (see Sandro's talk)

DataSampling using DPL (kudos Piotr)WP7

TPC reconstruction prototype 
(see Jens's talk)

WP13

O2 Monitoring and InfoLogger integration

DPL AS AN INTEGRATION PLATFORM FOR O2

O2 Control Integration WP8

MID Filtering Chain (kudos Gabriele Fronzè)

!33

