## Machine Learning and Quality Control in ALICE

3-4 Dec 2018, CERN <u>https://indico.cern.ch/event/766450</u> 56 registered participants!

### Goals

- Bring together ML and HEP communities to discuss applications of ML techniques for data quality control (QC)
- Discuss data sets and tools for application of ML techniques in ALICE
- Discuss problems to be solved with ML techniques for online and offline QC in ALICE

## Outline

- ML techniques for anomalies detection
- CMS and ATLAS experience with ML for QC
- QC data sets for ML in ALICE
- Examples of ML usage for QC in ALICE
- ML tools in ALICE
- ML for ALICE QC in Run3

# Anomalies detection with ML techniques

Kamil Deja

- Classification of anomalies (needed: labelled dataset)
- Regression of one value which may indicate anomalies (needed: dataset with known values)
- Clustering of unknown data and searching for outliers (needed: noisy data)
- Dimensionality reduction for sparse data representation and searching of outliers (needed: high dimensional data)

#### Clusterization

### Input Compressed Output Representation Autoencoder Neural Networks

#### **Classification and Regression**

## Online deep learning for pulsed-signal forecasting



gradient descent → can be consider for DCS data 6-Dec-2018 Jacek Otwinowski

### CMS – Data Quality Monitoring (DQM)

#### Mantas Stankevicius

- ML techniques are used for online anomaly detection and offline data certification
- Do not replace experts but minimize human errors



# CMS Drift Tubes – online anomalies detection

#### Mantas Stankevicius

#### Local:

Each layer is treated independently

#### **Regional:**

Use information from all layers from individual chambers

#### Global:

Information from all chambers for a given run





### CMS Drift Tubes – online anomalies detection

IVIAILIAS SLAIIKEVICIL

#### Global Regional Local Sensitivity (TPR) 80 60 60 60 60 Station 3 0 Dimension -10 CNN, AUC: 0.995 Station 2 SNN, AUC: 0.993 0.4 0.7 -20 iance, AUC: 0.977 AUC: 0.934 Convolution, AUC: 0.944 0.2 SVM, AUC: 0.93 Sparse, AUC: 0.935 0 0.6 Dimension 2 Sobel, AUC: 0.916 Denoising, AUC: 0.909 CNN working point Simple, AUC: 0.893 -30 -20 -10 Dimension 1 0.5.0 -60 0.00 0.05 0.10 0.2 0.15 0.20 0.4 0.6 0.8 1.0 Station 1 Fall-out (1-TNR) Fall-out (1-TNR)

- Supervised Convolutional Neural Networks (CNN) outperforms other methods (ROC AUC: 0.995)
- Successfully applied in production

- Semi-supervised autoencoder variation
- The position impact occupancy patterns
- Autoencoders learn a compressed representation of chamber data

# CMS – offline anomalies detection with Autoencoders



Mantas Stankevicius

Features are grouped by physics objects: A: Reconstruction errors is small

- B: Reconstruction error is high
  - Anomalies seen for muons and jets

ROC AUC = 0.978

### ATLAS – Data Quality Monitoring (DQM)

#### Peter Onyisi



Jacek Otwinowski

### ATLAS – DQ Defect Entry System

#### Peter Onyisi

#### **ATLAS DQ Defect Entry System**

| ou are logged in as <i>ponyisi</i> . Log out of CERN applications 🖻                          |                                 |                                                                                                                          |                                                                                                                                                                                               |  |  |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Database: Production 🔻 🕄                                                                     | Tag: HEAD                       |                                                                                                                          |                                                                                                                                                                                               |  |  |  |  |
|                                                                                              |                                 |                                                                                                                          |                                                                                                                                                                                               |  |  |  |  |
| Show defects in a run Upload                                                                 | Sign off a run                  | Multirun upload — alternate format                                                                                       |                                                                                                                                                                                               |  |  |  |  |
| Filter:                                                                                      |                                 |                                                                                                                          |                                                                                                                                                                                               |  |  |  |  |
| Show defects marked absent:                                                                  | 2                               |                                                                                                                          |                                                                                                                                                                                               |  |  |  |  |
| Show defects in run 350479                                                                   | Load                            |                                                                                                                          |                                                                                                                                                                                               |  |  |  |  |
| Hover mouse pointer over LB ranges to se<br><b>Bold</b> defects are considered intolerable b | ee comments, over<br>y someone. | defect names to see descriptions.                                                                                        |                                                                                                                                                                                               |  |  |  |  |
| Defect                                                                                       |                                 |                                                                                                                          | Present in LBs                                                                                                                                                                                |  |  |  |  |
| EGAMMA_ETAPHI_SPIKES                                                                         |                                 |                                                                                                                          | 1-719                                                                                                                                                                                         |  |  |  |  |
| GLOBAL_BUSY                                                                                  |                                 | 1-7, 12-16, 49, 456, 501, 547, 608, 613, 658                                                                             |                                                                                                                                                                                               |  |  |  |  |
| GLOBAL_NOTREADY                                                                              |                                 |                                                                                                                          | 1-64, 718-719                                                                                                                                                                                 |  |  |  |  |
| ID_BS_RUNAVERAGE                                                                             |                                 |                                                                                                                          | 1-64, 718-719                                                                                                                                                                                 |  |  |  |  |
| ID_IBL_TRACKCOVERAGE                                                                         |                                 |                                                                                                                          | 1-719                                                                                                                                                                                         |  |  |  |  |
| JET_LOWOCCUPANCY                                                                             |                                 |                                                                                                                          | 1-719                                                                                                                                                                                         |  |  |  |  |
| LAR_DATACORRUPT                                                                              |                                 | 117,                                                                                                                     | , 118-132, 133, 199, 717                                                                                                                                                                      |  |  |  |  |
| LAR_EMBA_DATACORRUPT                                                                         |                                 |                                                                                                                          | 118-132                                                                                                                                                                                       |  |  |  |  |
| LAR_EMECA_NOISEBURST                                                                         | 69, 75<br>298, 30               | 5, 78, 118, 123, 142, 150, 154, 161, 1<br>10, 328, 352, 357, 366, 371, 375, 376<br>461, 468, 469, 481, 516, 534, 549, 59 | 165-166, 169-171, 176, 206, 224, 227, 250, 263, 265, 280, 283,<br>, 380-381, 383, 390, 394, 400-401, 404, 426, 440-442, 445, 460-<br>92, 599, 611, 634, 639, 643, 646, 651, 661, 670, 712-713 |  |  |  |  |
| LAR_EMECC_NOISEBURST                                                                         | 125,<br>34                      | 140, 165, 167, 173, 180, 190, 203, 21<br>4, 352, 379, 403, 405, 408, 416, 431,                                           | 12, 215, 218, 221, 228, 235, 257, 261, 277, 296-297, 299, 324,<br>, 441, 445, 468, 488, 518, 551, 599, 607, 633-634, 659, 710                                                                 |  |  |  |  |

### ATLAS – ML for DQM

#### Peter Onyisi

- No active deployment of ML for DQM during Run2. Developments under consideration for Run3.
- Investigated so far
  - Prediction of L1 trigger rates from luminosity, learning from time series in a given run
  - Anomaly detection: flag luminosity blocks which look "different" from others using Autoencoders, Boosted Decision Trees, ...
- Conceptual ideas
  - Automated predictions of reference histograms for a given e.g. luminosity, run length
  - Discover correlations of detector "defects" and characteristic of predicted histograms
- General
  - very easy to have false positives (keep discovering that luminosity / prescales changes during Run)
  - need value-added over human checks

### ALICE data sets for ML

#### Jens Wiechula

- Online/offline detector QA (root files)
- Calibration (OCDB root files, partially contains DCS info)
- Logbook (SQL)
- MonALISA
- DCS (ORACLE DARMA inteface) no automatized access by user

Online/offline detector QA to be extracted in smaller time intervals (~5 min.) – better for ML

#### Simple interface to access this data



treeCalib->SetAlias("qaPIDOK", "resolutionMIP>0&&resolutionMIPele>0"); treeCalib->Draw("separationPower:interactionRate:qmaxQA.Sum()/72.",

"run>284700&&qmaxQA.Sum()/72.>30&&qaPIDOK", "colz")

### ALICE data sets from HLT/Overwatch for ML



Available at https://aliceoverwatch.physics.yale.edu.

- Accessible from FOS
- Trending information is also extracted
- Very good data sample for ML

### Pipeline data analysis

Marian Ivanov



- Differential QA
- Study detector performance parametrization maps, physical models, ...
- Feasibility studies
- MC vs data comparison and MC tuning on data
- Enable ML techniques (MVA)

### Interface to MVA methods in ALICE

#### Marian Ivanov

AliNDFunctionInterface : TMVA wrapper in ALICE analysis framework AliRoot (C++ implementation usable aslo in Python)

- Simple and compact user interface
  - similar to TTree::Draw and Histogram::Fit queries
- Store all the data as ROOT objects in ROOT files (instead of weight files, no xml files)
  - possibility to store data in Alice calibration DB
- Easy usage providing TFormula/TTreeformula interface
  - possibility to combine/normalize/operate with other formulas (other TMVA, global fits, NDimensional local tables (e.g AliNDLocalRegression object)

New wrapper (written in Python - to be interfaced also to C++)

- Local error estimates (reducible and irreducible errors) and local robust estimators
- Combined/weighted evaluation, caching and model compression (WORK IN progress)

### Goal - make the usage of the MVA almost as easy as standard fits in root

### ML and error estimate with ML methods

#### Marian Ivanov

https://fairyonice.github.io/Measure-the-uncertainty-in-deep-learning-models-using-dropout.htm



### Currently no standard methods in ML to estimate errors in the regions with sparse data



Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning (https://arxiv.org/abs/1506.02142 - 2015)

 test-time dropout can be seen as Bayesian approximation to a Gaussian process related to the original network

#### Bootstrap approach

• provides "prediction" intervals for all methods

Jacek Otwinowski

### TPC QC data classes example with ML

Kamil Deja

Example (TPC Jan 2016 – Dec 2017) ~ 1000 runs

| Class\Approach                                                                | Definitely<br>good | Good     | Definitely<br>bad |
|-------------------------------------------------------------------------------|--------------------|----------|-------------------|
| Detector was ON and running according to nominal specifications               | ok                 | ok       | To check          |
| Not set                                                                       | To check           | To check | To check          |
| Good data but some not full TPC acceptance                                    | To check           | ok       | To check          |
| detector was ON; but output can not be trusted<br>/ is known to be not usable | To check           | To check | bad               |

- 217 numerical physical parameters mapped with **PCA to 26 dimensions** with 100% information preserved
- New dimensions showed **no significant correlation** with run number

### TPC QC data classification example with ML Kamil Deja



- Best performance of Random Forest
- Assignment of the quality label in 75% of the cases with over 95% accuracy

### Example: PID with ML in ALICE

Focus on Kaons

Łukasz Graczykowski et al.



### PID with ML example in ALICE

#### Kaon in TPC and TOF

Łukasz Graczykowski et al.



#### More efficient kaon identification with by ML methods (Random Forest)

Jacek Otwinowski

### PID with ML example in ALICE



Łukasz Graczykowski et al.



Much better background (not Kaon) rejection by ML methods (Random Forest)

### EMCAL QC with ML examples

#### PAR/L1 phase problem



#### **Bad channel calibration**





Markus Fasel

### Neural-Network based signal extraction implemented for EMCAL

- Training data: LED run
- Fast
- Good time resolution (similar to standard method)
- Amplitude underpredicted
- $\rightarrow$  Not yet production ready

### Common framework for ML analysis in ALICE

#### Gian Michele Innocenti

Proving flexible tool to perform Machine Learning analysis. It includes:

- Common Ntuplizer for TTree creation that can run on the Grid using LEGO trains (effort led by Andrea Festanti, important help from Markus/Jan for the LEGO part)
- ROOT to Pandas DataFrame conversion:
  - convert the root TTree of MC and Data into Pandas data frames
  - create training samples mixing MC and data
  - create testing and training samples
- Training/Testing and common validation routines with Scikit/TensorFlow:
  - implement most common ML algorithms and Deep Neural network for classification using SciKit and TensorFlow
  - Automatic validation with cross score validation, confusion matrix, learning curves, ROC, etc.
- Testing on large samples for analysis and new TTree creation:
  - new decision flag is added to the data frame
  - a new TTree is created including flags and probabilities of all the ML algorithm
  - Possibility of exporting the model in C++ for running testing on the Grid

### It can be used for any type of ML analysis including QC

### MC tuning on data with ML in ALICE



### MC tuning on data with ML in ALICE

#### ML algorithm learns to discriminate between data and MC

Gian Michele Innocenti



### select background events from side bands for MC and data

 tag the data as signal and MC as background

#### Cut observables after MC tuning data data data MC MC MC MC 10 10<sup>1</sup> 10<sup>0</sup> 10 10<sup>0</sup> 10-Intries 10 10-1 100 10-3 $10^{-2}$ 10-10-10-4 10-2 100 10-2 10<sup>-1</sup> d len ML 10-4 10-3 10-1 10-2 10-1 101 10-2 10-1 10-4 10-3 10-2 10-1 d\_len\_xy\_ML norm\_dl\_xy\_ML dist 12 ML cos\_p\_ML 100 data data data data data 100 MC MC MC MC 10- $10^{1}$ 10<sup>1</sup> 10-10-10-2 10-10entr 10-' 100 10<sup>0</sup> 10-3 10-10-4 10-10-5 10 101 100 100 10-3 10-2 100 101 10-3 10-2 dca\_ML pt\_p\_ML pt K ML sig\_vert\_ML pt\_pi\_ML data data

MC

× 10<sup>0</sup>6 × 10<sup>0</sup> 10<sup>1</sup> pt cand ML

 $2 \times 10^{0}3 \times 10^{0} \times 10^{0}6 \times 10^{0}$ 

Training variables

inv mass ML

### ML usage foreseen in Run3



### Outlook

- ML techniques started to be used in HEP experiments for Data Quality Monitoring and data certification
- ALICE QC data to be prepared for ML applications
  - Smaller time intervals for offline data
  - Trending parameter extraction for online data
- ML techniques successfully applied for offline TPC QC data classification (but only 1000 chunks/runs)
- EMCAL QC with ML started
- Good performance of ML for PID identification (example for kaons)
- MC tuning on data with ML tested. Alternative solution to reweighting based on parameterization maps
- ML tools development ongoing
  - Interface to MVA from pipeline analysis
  - ML framework for all purpose analysis in ALICE
  - $\rightarrow$  Possibility to work out one solution
- ML application for online/offline QC foreseen in Run3