DE LA RECHERCHE À L'INDUSTRIE

FCC activities Status and Update at CEA

MDP-FCC-ECC coordination meeting 6

H. Felice, E. Rochepault, V. Calvelli, M. Durante, P. Mallon, J.M. Rifflet, C. Lorin, C. Pes, M. Segreti, P. Manil, J.F. Millot, G. Minier

03/12/2018

- Within the ECC program => CEA Saclay in charge of the double aperture block-type configuration
 - ECC team: M. Durante, C. Pes, M. Segreti, C. Lorin, E. Rochepault

I _{op}	10176 A			
LL margin HF	14.0 %			
B _{bore}	16 T			
B _{peak} HF	16.7 T			
σ _x / σ _{VM}				
RT loading	-147 / 136 MPa			
Cool-down	-180 / 165 MPa			
Excitation	-185 / 167 MPa			

3D magnetic model

- 3D mechanical model under development
- Ongoing CDR preparation

FROM ECC TO THE MODEL

- CERN-CEA collaboration agreement to design and fabricate a single aperture block model
 - FCC Flared-ends Dipole Demonstrator: F2D2
 - F2D2 team at CEA: H. Felice, E. Rochepault, V. Calvelli, M. Durante, P. Mallon, P. Manil, J.F. Millot, G. Minier, J.M. Rifflet
 - At CERN: S. Izquierdo Bermudez, D. Tommasini, J. Fleiter

Parameters	Specification
Coil size and block positions	As close as possible to EuroCirCol (ECC)
Magnet aperture	50 mm (same as ECC)
Cables	Min. 1000 A/mm ² @ 16T, 4.2K Target 1200 A/mm ² @ 16T, 4.2K
Field and margin	Maximum field at 14% of L.L. margin at 1.9K
2D harmonics	=ECC spec. at collision (<3 units)
Outer diameter	Representative of ECC (~570 mm) Fit in the CERN test station
Length of constant field (« Flat top »)	~1 m
Total length	~1.5 m Fit in the CEA oven
Coil transverse dimensions	Fit in the CEA oven (400 mm diameter)
3D harmonics	No specification

MAGNETIC 2D DESIGN

ECC cross-section

- Grading •
- 4 layers of conductor •
- some adjustments => manufacturability

2D magnetic parameters		
l _{op}	10469 A	
LL margin HF	14.0 %	
LL margin LF	15.4%	
B _{bore}	-15.54 T	
B _{peak} HF	16.20 T	
B _{peak} LF	11.85 T	
b ₃ at nominal	2.98	
b ₃ at injection	-14.80	
b ₅	-0.50	70 X [mm]
b ₇	-2.98	60
b ₉	-1.46	50

- 3D magnetic modeling ongoing
- Protection stu

udies to start		COD4011	
	0.0	10.0	
	Component: B		

70.0

60.0

50.0

30.0

Conductor parameters	HF	LF
Strand diameter	1.1 mm	0.7 mm
Cu/nonCu ratio	0,8	2
Jc at 4.2 K and 16 T	1200 A/mm2	
Cable number of strands	21	34
Unreacted bare cable width	12.579 mm	
Unreacted bare cable thickness	1.969 mm	1.253 mm
HT cable thickness dim. change	4.6 %	4.5 %
HT cable width dim. change	1.3 %	
Reacted bare cable width	12.74 mm	
Reacted bare cable thickness	2.06 mm	1.31 mm
Insulation thickness at 50 MPa	0.150 mm	

CHALLENGE

- Key challenge: grading in Nb_3Sn coils => joint between conductor grades
 - <u>1st scenario</u>: Internal joints => inside the coils
 - EPFL/CERN collaboration on joint development by soldering (post-HT) or copper diffusion (during HT)
 - <u>2nd scenario</u>: External joints => outside the coils
 - CEA baseline pending internal joint technique maturity
 - · Winding technique and coil design are closely linked
 - 2 nested double pancakes (2 layer jumps)
 - Taking the leads out with reasonable bending radii and coil ends length

DE LA RECHERCHE À L'INDUSTRI

COIL AND TOOLING ENGINEERING DESIGN

DE LA RECHERCHE À L'INDUSTR

MECHANICAL DESIGN

- 2D mechanical model => acceptable stress level in the coils
- Preliminary CAD model to assess constraints due to the vertical coil size

Study of the stress-induced Ic degradation

A. Bord, E. Rochepault, Computation of Current Limit in Nb₃Sn Superconducting Magnets Using Magnetic Field and Stress, to be published

Seqv, Pre-load =89 MPa < 150 MPa

Seqv, Cool-down =202 MPa ~ 200 MPa

=5 MPa > 0

Next step: 3D ANSYS model

SUMMARY AND PLAN

DE LA RECHERCHE À L'INDUSTRIE

