

16 T common coil dipole status and update

Alejandro Fernandez Navarro, Javier Munilla Lopez, Fernando Toral Fernandez- CIEMAT 03/12/2018 – EuroCirCol coordination meeting 06

GOBIERNO M DE ESPAÑA D Y

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Overview

- Status
- Electromagnetic design
- Mechanical design
- Quench protection
- Conclusions

- **Two conceptual options for the mechanical support** have been considered:
 - Closed support, based on a constrained "classical" solution for accelerator magnets regarding prestress levels.
 - Open support, based on a more "innovative" solution for small stresses but higher displacements of the coil.

The closed support option was selected as baseline for the FCC-CDR.

We are working on the signature of a **Collaboration Agreement** to develop and study both support structures for Nb₃Sn racetrack coils produced at CERN.

- The 2D electromagnetic design of the baseline Common Coil option has been finalized, the 2D mechanical design has been updated.
- We are writing the **Common Coil Conceptual Design Report** for the FCC-CDR long contribution.

Energéticas, Mi y Teon	adioambientales alógicas				5	FERENCE .		
			RI	PORT				
CON	CEPTUA	L DES	GN REPOI	RT FOR	THE 1	<mark>6 Т СО</mark>	MMON	I COIL
Abstract								
			TRA	CEABILITY				
Prepared by:	A. M. Fernan	dez Nava	TRA	CEABILITY Toral			Date: 2	018-10-24
Prepared by: Verified by:	A. M. Fernan	dez Nava	TRAI rro, J. <u>Munilla</u> , F.	CEABILITY Toral			Date: 2 Date: 2	018-10-24 018-MM-DD
Trepared by: Verified by: Approved by:	A. M. Fernan	dez Nava	IRA rro, J. Munilla, F.	C EABILITY Toral			Date: 2 Date: 2 Date: 2	018-10-24 018-10-24 018-MM-DD 0YY-MM-DD
Prepared by: Verified by: Approved by Distribution:	A. M. Fernan	dez Nava	TRA rro, J. Munilla, F.	CEABILITY Toral			Date: 2 Date: 2 Date: 2	018-10-24 018-MM-DD 019-MM-DD
Prepared by: Verified by: Approved by: Distribution. Rev. No.	A. M. Fernan FCC Member Date	dez Nava	TRA rro, J. <u>Munilla</u> , F. Description of t	CEABILITY Toral Changes (mo	jor chang	es oniy, n,	Date: 2 Date: 2 Date: 2	D18-10-24 D18-MM-DD DYY-MM-DD es in EDMS)

Electromagnetic design

Design parameters

Optimized: 3 cables, 2 wires.

Parameter	Units	V1h2_hllh c650_pre1
Nominal current	kA	15.88
Nominal bore field	Т	16.00
Intra-beam distance	mm	320
Aperture	mm	27.5
Iron yoke diameter	mm	650
Number of strands per cable (HF/LF/PC)	-	28/18/30
Strand diameter (HF/LF/PC)	mm	1.2/1.2/1.2
Cu/Sc ratio (HF/LF/PC)	-	1/2.6/1
Total surface of strands	cm ²	166.8
Total FCC bare cable weight	ton	9502

Electromagnetic results

2D magnetic results summary

Parameter	Units	V1h2_hllhc650_ pre1
B peak in cables	Т	16.57
Margin on load line in cable type (HF/LF/PC)	%	14.1 /14.3/ 14.1
b3/b5/b7/b9	units	-0.2/ -4.5 /1.6/-2.3
a2/a4/a6/a8	units	0.4/-0.9/-0.9/-0.3
Stored energy	MJ/m	3.24
Static self inductance	mH/m	25.7
L*I	HA/m	408
Sum Fx	MN/m	14.47
Sum Fy	MN/m	0.37

all Nb3Sn - strand 1.1 mm - 320 mm intrabeam - grading - pole coils 18/10/02 13:35

GRAPH NO: 1. 2. 3. 4.

Quench protection results

Calculated in Excel: the adiabatic hot-spot temperature at 105 % of the nominal current is **348 K.** A collaboration with the TE-MPE-PE section (Michal Maciejewski and Marco Prioli) made possible to check that the stresses in the coils in a quench event after CLIQ firing are under the 200 MPa stress limit (STEAM-COMSOL-ANSYS).

Mechanical design

Mechanical results

MATERIAL	Stress limit [MPa]		E [GPa]		ν	α
	RT	1.9 K	RT	1.9 K		RT→1.9K
Coil	150	200			0.3	
Radial dir			30	33		3.1 10-3
Azimuthal dir			25	27.5		3.4 10-3
Austenitic steel	350	1050	193	210	0.28	2.8 10-3
(316LN)						
AI7075	480	690	70	79	0.3	4.2 10-3
Ferromagnetic iron	230	720*	213	224	0.28	2.0 10-3
Ti6Al4V	800	1650	115	126	0.3	1.7 10-3

 Assembly coil Von-Mises stress (Mpa)

Cool down 1.9 K coil Von-Mises stress (Mpa)

- All the **equivalent stresses in the support**, iron yoke and shell **are under the yield strength** of the materials for the three steps: Assembly, cool down and powering at nominal.
- The equivalent stress in the coils is under the design limit for the three steps: Assembly, cool down and powering.

Mechanical results

Total deformation (mm) from cold to powering (deformation amplified x10)

Small separations up to 0.39 mm without sliding in some contacts between coils and support or between the wedges and support.

Conclusions

- **The closed support option** was selected as baseline for the FCC-CDR.
- The 2D electromagnetic design of the baseline Common Coil option has been finalized and fulfills the design requirements.
- **The 2D mechanical design** of the baseline Common Coil option has been updated and fulfills the maximum stress requirements.
- We are writing the Common Coil Conceptual Design Report for the FCC-CDR long contribution.
- We are working on the signature of a Collaboration Agreement to develop and study both support structures for Nb₃Sn racetrack coils produced at CERN.