



# MD4506: APERTURE MEASUREMENETS WITH AC DIPOLE

N. Fuster-Martínez, M. Hofer, E. Maclean, D. Mirarchi, R. Bruce, R. Tomas, S. Redaelli On behalf of the collimation and OP team.



## **Motivation**



- A new global aperture measurement method based on using the AC dipole beam excitations plus a collimator scan was tested for the first time in 2017 in MD2396 on B1 at injection.
  - New method could be combined with optics measurements providing the largest AC dipole kick amplitude.
- Compatible results were obtained between methods in the MD2396 for B1H at injection.

| Bottleneck<br>at injection for B1H | AC dipole | ADT blow-<br>up |
|------------------------------------|-----------|-----------------|
| Q6R2                               | 12.9±0.8  | 12.7±0.8        |
| Q4L6                               | 12.7±0.8  | 12.6±0.8        |

- **The method was** tested at **top energy** during optics MD in 2017.
- ✓ For B2H methods disagree by  $1\sigma$ .

| Date                | B1Η [σ]       | B1V [σ]       | B2Η [σ]       | B2V [σ] |
|---------------------|---------------|---------------|---------------|---------|
| AC dipole Dec. 2017 | Q3R5          | Q2R5 and Q3L1 | Q3R5 and Q3L1 | Q3R1    |
| 30 cm 150 urad      | 10.8-11.3     | 10.5-11       | 11.8-12.3     | 10-10.5 |
| ADT TS2 2017        | Q3R5 and Q3L1 |               | Q3R5          | Q3R1    |
| 30 cm 150 urad      | 10.6-11.1     | >10.5         | 10.9-11.4     | 10.5-11 |

□ In the **2018 commissioning** the aperture for B2H was measured with the AC dipole method.

✓ Same level of discrepancy was observed.





#### MD merit:

- ✓ Investigate if the observed discrepancy in physics at FT energy occurs also at injection.
- ✓ Investigate the effect of the AC dipole tune, vertical settings and chromaticity on the measurements.

□4h MD.
□Injection optics.
□B2H.
□TCTPH.IP5 fixed to 10*σ*□Aperture scanned with TCP.



#### Measurements performed:

- □ Aperture measurements with the AC dipole method.
  - Different AC dipole delta tunes to test the β-βeating introduced by the AC dipole oscillations.
  - Different vertical working point and AC dipole vertical kick amplitude.
  - Different chromaticity.
- □ Aperture measurements with the ADT method for benchmarking.
- □ TCP and the TCT alignment for each scan because of the orbit drift due to ALICE solenoid ramp down.



## **MD results: AC dipole tune effect**





 $\Box$   $\triangle a \sim 0.4\sigma$  observed between positive and delta tune.

**Could be explained by the** β-βeating introduced by the AC dipole in agreement with MADX predictions. LSWG December 2018



# **MD results: ADT blow-up method for benchmarking**







| B2H                         | AC dipole |
|-----------------------------|-----------|
| $\Delta^{n-ac}q_x = +0.012$ | 9.5       |
| $\Delta^{n-ac}q_x = -0.012$ | 9.9       |
| ADT blow-up method          | 9.7       |
| TCTPH half gap              | 10        |

- □ ADT-blow up method aperture measurement in the same fill.
- Good agreement between the methods.
- **Ω** 200 µm beam drift observed between the start and end if this fill (~0.2  $\sigma$ ).





□ No impact on the measurements.

CÉRN

18

16

14

12

6

Δ

2

0 00:0<sup>8</sup>

10 g<sup>x</sup> [α<sup>x</sup>]

10<sup>1</sup>

10<sup>0</sup>

10<sup>0</sup> [10<sup>-2</sup>Gy/s]

10-2

B





**Good agreement** is found between the AC dipole measurements and the ADT blowup standard method for all the cases studied **at injection**.

At injection the methods are equivalent for **B1 and B2**.

**There is not a big effect from tune and the chromaticity.** 

- □ Results are in agreement with the MADX predictions.
- □ This does not explain the observed discrepancies at FT.
- □ Observed discrepancy at FT will require further investigation.