

MD 4510 : Beam lifetime optimization with ML

Loic Coyle

Belen Salvachua, Tatiana Pieloni, Michael Schenk, Jorg Wenninger, Tobias Tydecks, Gabriella Azzopardi

Generate data for machine learning

Motivation:

- Preliminary Machine Learning optimization study OP/EPFL gave encouraging results [1] but limited by available data
- Machine Learning SDSC/EPFL project: PACMAN

Tune H Beam 1 (Hz)

Objective:

- Generate data with relevant trends for machine learning based optimization applications to supplement and/or benchmark machine learning models
- Explore larger parameter space

Sequence Control Interface

Qt interface using:

- PyQt
- pjlsa
- pyjapc

Generation and control of trim sequences:

- Random tune trims around +/- 0.01 of the nominal injection tunes H/V = 0.275 / 0.290
- The path of the trims was optimized to avoid far jumps crossing many lines.
- We move from one point to the other, both beams and H/V changed at the same time
- Scans repeated with different machine settings

Overview

6h MD time

Sequences:

1: 100 points

2: 100 points

3: 50 points

4: 50 points, chroma 15 units

5: 50 points

6: 50 points

7: 50 points, chroma 15 units oct 40 A

8: 50 points, chroma 15 units

Tune measurement vs time, with timings of the applied trims

Main trends

For the second 100 trim sequence:

Tunes close to resonance, small $\Delta Q \rightarrow \text{High lifetimes and emittance}$ increase.

Multi-objective optimization problem

Lifetime data

Lifetime reaction to trim setting:

- Instantaneous response
- Longer term response

Can this be modeled with machine learning?

Intensive post processing required

Study the transient of lifetime after a tune trim.

Post processing - Tunes

Post-processing ongoing:

Tune from BBQ spectrum

BOSFU:TUNE signal unreliable, very noisy, when compared to the actual trim settings.

→ Custom post-processing method ?

The lifetime response seems to agree with the "optimal" tunes as given by previously trained Machine Learning model on 2018 data.

Comparison with ML model

The lifetime response seems to agree with the "optimal" tunes as given by previously trained Machine Learning model on 2018 data.

0.29

0.28 -

0.30 -

Summary

- MD went smoothly with the Sequence Control Interface → MD successful
- Corroborates previous machine learning study
- Generated essential data for future models → large ranges of the parameters with the relevant trends
- Data exploration and post-processing ongoing
- Soon to be used in a new multi-objective Machine Learning model