

MD 3292: Summary of BTF studies MD Block 3&4

X. Buffat, T. Levens, C. Tambasco, T. Pieloni, E. Métral, N. Mounet, G. Trad, A. Mereghetti, E. Carideo

OP crew on shift and injectors

LSWG 4/12/2018

MD 3292 (Block 3)

- BTF gated system used with amplitude thresholds estimated from previous BTF MD (3290)
- 1 Fill: 13 INDIVS in B1 (gated BTF measurements) and 48 Nominal bunches in B2

Several problems with the BTF application:

- No possibility to set-up excitation amplitude through the GUI due to an update of the INSPECTOR We changed the excitation by using FESA (thanks G. Trad)
- No excitation in the vertical plane due to bad phasing in this plane.
- Solved for next MD (block 4) (thanks T. Levens)
- Measurements acquired at flat top energy on B1 H white noise (injected for few seconds)
- Due to some problem with the tune application we could not move to squeeze mode and we decide to continue studies with noise \rightarrow No measurements with BB Long Range

Preliminary results MD 3292 Block 3

BTF measurements at flat top (gated) NO Instability due to BTF excitation itself

At higher noise amplitude bunches are more sensitive to external excitations (BTF) and BTF could trigger instabilities \rightarrow Impact on transverse beam stability

Beam Losses and instabilities

Drop of intensities observed while injecting noise

 \rightarrow bunches that got unstable during BTF continue to loose intensity even when noise stopped

From beam profiles can we detect population in the tails? \rightarrow Analysis ongoing

Impedance and BTF response at top energy

- Tune shift observed in BTF response (asymmetric sidebands w.r.t. tune peak)
- Difficult to reconstruct Stability Diagram by using analytical fitting function when in the presence of impedance response

COMBI Comparison (PySSD and Impedance)

Tune shift: 0.27448399821526354 Tune spread: 1.0223026086236071 Amplitude: 4.788423208582099e-08 Bunch int=0.05E11

COMBI Comparison (PySSD and Impedance)

Tune shift: 0.2742137642768119 Tune spread: 1.4405459258983169 Amplitude: 5.925715328032227e-08

Bunch int=1.0E11

- Impedance contribution in simulated BTF response
- Fitting function method does not applied in the presence of strong impedance

Impedance and BTF response at top energy

- Tune shift observed in BTF response (asymmetric sidebands w.r.t. tune peak)
- Difficult to reconstruct Stability Diagram by using analytical fitting function when in the presence of impedance response

MD 3292 (Block 4)

- 3 lower intensity INDIVS in Beam 1 and 2 trains of 48 nominal bunches on B2.
- Due to a mismatch of the sextupoles in sector 34 (somehow hidden leftover from a previous MD) we could not ramp the energy to reach flat top (a dump was required to solve the problem).
- Unfortunately we could not re-inject trains in B2 due to a cavity problem in the PS. Waiting for recovery, we decided to acquire BTF measurements at injection energy with lower intensity INDIVS on both Beams as a function of the octupoles (8 A, 13 A) and chromaticity (Q'~3, Q'~1)
- Since trains could not be recovered in time, we decided to proceed injecting 3 lower INDIVS in both beams for head-on studies, but not long-range as foreseen.
- At flat top, we reduced the impedance by opening the secondary and primary collimators (TCSPM and IR7 TCSGs at 15sig, IR7 TCP settings at 6sig)
- At the end of the squeeze we collided the beams. BTF measurements were acquired with different beam offset separations (0,1,1.2,1.4,1.6,6 σ)

BTF Measurements in the presence of Head-on beam-beam

- Biggest tune spread observed with full Head-on collision (as expected)
- Smallest tune spred observed at ~1.5 σ Minimum of stability

BTF Measurements in the presence of Head-on beam-beam

Summary

- No instabilities triggered during the MD at flat top due to BTF excitation (settings and gated system successful) → measurements at flat top are possible
- However some difficulties:
 - Impedance contribution has to be reduced (lower intensity bunches and retracted collimators)
 - Difficult to reconstruct stability diagrams in the presence of synchrotron sidebands due to chromaticity at flat top

Measurements in the presence of noise:

- In the presence of low amplitude noise no instability observed with BTF (in the MD time window)
- Confirmed that noise could be source of instabilities (bunches sensitive to BTF excitation)
- Analysis of the beam profiles in the presence of noise ongoing, together with COMBI simulations with noise

Measurements in the presence of head-on interactions:

- Measurements acquired as a function of the separations at the IP → A minimum of stability at 1.5 σ (as expected) has been measured
- Tune shifts reproduced with MADX
- Simulations of the coherent response of the BTF in COMBI are ongoing