

X. Buffat, J. Komppula, G. Kotzian, D. Valuch

LHC ADT

New turn by turn filters

- Currently used ADT filter scheme (Notch+Hilbert) is 8 taps long
- 3-tap filters allow larger tune acceptance and gain margins
- Test for 16-tap filter (possible noise reduction)
- MD procedure
 - Single pickup (BPMCS.9R4.B1) and kicker in vertical plane
 - Damping time measured as a function of tune
 - Injection machine settings, low chromaticity (2-4 units) and no octupoles
 - Fractional tune varied between 0.25 and 0.33
 - Beam kicked with the ADT
 - Data from ObsBoxB.LHC.ADT.B1V.Q9.Tune2k buffer
 - Reference tune for tune shifts from the kicks with >200 turns damping time

Tune acceptance comparison

- Observations
 - 3-tap filter provides flat response in the studied tune range
 - 3-tap filter induces less tune shift
 - In general, ADT amplifies tune shifts
 - Amplification depends on ADT gain (damping time) and filter
 - Good agreement between the PyHEADTAIL simulations and the measurements

Additional tests

- Bunch train injection with the 3-tap filter
 - 10 turns damping time demonstrated with the nominal injection settings

- 16 tap filter
 - Tune acceptance measured
 - <15 turns damping times demonstrated for single bunch injections

Ready for operational use?

- 3-tap filter: no drawbacks found so far
 - **Tune acceptance:** Better for all the tunes and pickup locations
 - Noise performance: Similar to the currently used scheme
 - Flexibility: Analytical equation for all the operational schemes
- 16-tap filter?
 - MD demonstrated technical feasibility for operational testing after the LS2
 - Better noise performance is not obvious
 - Fundamental challenges to suppress beam noise at the betatron frequency (error propagation)
 - Noise and damping can be modified around the betatron frequency
 - Open question: any effects when operated with chromaticity and octupoles?

Thank you!

Filter frequency responses

Pickup BPMCS.7R4.B1 → Kicker ADTKV.A5R4.B1

3-tap filter coefficients

