

Particle Accelerators Explained for Everybody

"Without Math"

Rende Steerenberg – BE/OP

Contents

- Why Accelerators and Colliders ?
- The CERN Accelerator Complex
- The Main Ingredients of an Accelerator
- A brief word on the Future

- Why Accelerators and Colliders ?
- The CERN Accelerator Complex
- The Main Ingredients of an Accelerator
- A brief word on the Future

Creating Matter from Energy

During the Big Bang Energy was transformed in matter

 $E = m c^2$

In our accelerators we provide energy to the particles we accelerate.

In the detectors we observe the matter created

Looking to smaller dimensions

Particle accelerators $\lambda < 0.01 \text{ nm}$

Increasing the energy will reduce the wavelength

Fixed Target vs. Colliders

Fixed Target

Collider

 $E = E_{beam1} + E_{beam2}$

Much of the energy is lost in the target and only part is used to produce secondary particles

All energy will be available for particle production

The Aim:

Verify the Standard **Model**

Search for physics beyond the **Standard Model**

Gravitational force

Electromagnetic force

Accelerators and Their Use

Today: ~ 30'000 accelerators operational world-wide*

The large majority is used in industry and medicine

Industrial applications: ~ 20'000*

Medical applications: ~ 10'000^{*}

Les than a fraction of a percent is used for research and discovery science

Cyclotrons

Synchrotron light sources (e⁻)

Lin. & Circ. accelerators/Colliders

This lecture will concentrate on the CERN type machines of which the majority are **Synchrotrons**

*Source: World Scientific Reviews of Accelerator Science and Technology A.W. Chao

- Why Accelerators and Colliders ?
- The CERN Accelerator Complex
- The Main Ingredients of an Accelerator
- A brief word on the Future

The CERN Accelerator Complex

Filling the LHC and Satisfying Fixed Target users

How does the LHC fit in this ?

- Field in main magnets
- = Beam 1 intensity (current)
- = Beam 2 intensity (current)

The LHC is built to collide protons at 7 TeV per beam, which is **14 TeV centre of Mass**

In 2012 it ran at 4 TeV per beam, 8 TeV c.o.m.

In 2015 it ran at 6.5 TeV per beam, 13 TeV c.o.m

- Why Accelerators and Colliders ?
- The CERN Accelerator Complex
- The Main Ingredients of an Accelerator
- A brief word on the Future

Towards Relativity

The Units we use for Energy

- The energy acquired by an electron in a potential of 1 Volts is defined as being 1 eV
- Thus 1 eV = 1.6 x 10⁻¹⁹ Joules

The unit eV is too small to be used today, we use:

1 KeV = 10^3 , MeV = 10^6 , GeV = 10^9 , TeV = 10^{12}

The Energy in the LHC beam

- The energy in one LHC beam at high energy is about 320 Million Joules
- This corresponds to the energy of a TGV engine going at 150 km/h

..... but then concentrated in the size of a needle

LEIR as an Example

LEIR as an Example

The particle beam:

- arrives through a transfer line
- is injected
- is accelerated over many turns in a "circular" machine
- is extracted
- leaves through a transfer line

Travelling Through nothingness

Vacuum in a mostly **stainless steel vacuum chamber** is required to **avoid** the particles to **interact** with the **gas molecules**

Especially important for low energy particles and anti-matter particles, but also for colliders Why actually ???

In the LHC vacuum is also used as insulator

Injecting & Extracting Particles

Injecting & Extracting Particles

Injecting & Extracting Particles

Make Particles Circulate

Deviating Charged Particles

Oscillatory Motion of Particles

Different particles with different initial conditions in a homogeneous magnetic field will cause oscillatory motion in the horizontal plane \rightarrow <u>Betatron Oscillations</u>

Oscillatory Motion of Particles

The horizontal motion seems to be "stable".... What about the vertical plane ?

Many particles many initial conditions

Focusing Particle Beams

Focusing particles, a bit like light in a lens

Focusing the Particle Beam

Accelerating Particles

Accelerating Beams

Accelerating Beams

The Eyes of Operations

Beam intensity or current measurement

Transverse beam profile/size measurement

Longitudinal beam profile measurements

Measure the LHC luminosity, number of events per surface and time unit.

Any many more beam properties.....

Example: Wall Current Monitor

 A circulating bunch creates an image current in vacuum chamber.

• The induced image current is the same size but has the opposite sign to the bunch current.

Possible Limitations

Machines and elements cannot be built with infinite perfection

Same phase and frequency for driving force and the system can cause resonances and be destructive

Electric

Magnetie field

Neighbouring charges with the same polarity experience repelling forces

Moving particles create currents, These currents result in attracting or repelling magnetic fields

- Why Accelerators and Colliders ?
- The CERN Accelerator Complex
- The Main Ingredients of an Accelerator
- A brief word on the Future

Luminosity, the Figure of Merit

LIU: What is being changed ?

These are only the main modifications and this list is not exhaustive

- LINAC4 PS Booster:
 - New LINAC 4 with H⁻ injection
 - Higher injection energy
 - New Finemet® RF cavity system
 - Increase of extraction energy

• PS:

- Injection energy increase from 1.4 GeV to 2 GeV
- New Finemet® RF Longitudinal feedback system
- New RF beam manipulation scheme to increase beam brightness
- SPS
 - Machine Impedance reduction (instabilities)
 - New 200 MHZ RF system
 - Vacuum chamber coating against e-cloud

Courtesy of A. Huschauer

HL-LHC: What will be changed ?

- New IR-quads (inner triplets)
- New 11T short dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection

Major intervention on more than 1.2 km of the LHC These are only the main modifications and this list is not exhaustive

Albert Einstein

www.thequotes.in