

14th "Trento" Workshop for Advanced Silicon Radiation Detectors, 25 – 27 Feb 2019

Charge collection efficiency study of neutron irradiated silicon pad detectors for the CMS High Granularity Calorimeter

Timo Peltola ⁽¹ On behalf of the CMS collaboration

⁽¹Texas Tech University, Department of Physics and Astronomy, Lubbock 79409, TX

Outline

HGCAL: Upgrade of ECAL/HCAL endcaps
 Neutron irradiation campaign: Samples, fluences & facilities

CCE study: TCT-signal & simulation tuning
 Results I: CCE(V,Φ) of 300/200/120 µm sensors @ -30° C
 CCE(Φ): Operating voltage @ HGCal
 Results II: Full depletion voltages

Conclusions

HGCAL: Upgrade of ECAL/HCAL endcaps

[1] CMS-TDR-17-007

TTU irradiation campaign: Samples, fluences & facilities

Neutron irradiations: RI & UCD samples

Radiation damage @ HGCAL mostly due to neutrons:

- 30 test samples irradiated @ Rhode Island (RINSC) & UC Davis (MNRC) reactors \rightarrow crosscheck dosimetries & methods for LC-extracted Φ (see backup 1 – 2)
- Table: Red Rhode Island (RI), Black UC Davis (UCD)

	Wafer	Sensor type	Target fluence [n _{eq} /cm ²]						
300P:	size	& thickness	1.5e14	5.0e14	7.5e14	1.5e15	3.8e15	1.0e16	
300 µm thick n-on-p diode	8"	→ 300P	1 + 0	1 + 0	<mark>2 +</mark> 2			<mark>0 + 1</mark>	
		200P				<mark>1 + 0</mark>	1 + 1	<mark>0</mark> + 1	
		Epi 120P					<mark>0</mark> + 1		
	6"	300P				<mark>0</mark> + 1	<mark>0</mark> + 1	0 + 1	
		120P				1 + 0	1 + 0	1 + 2	
		300N	1 + 0	1 + 0	1 + 1				
		200N				1 + 0			
Samples:		120N					<mark>2</mark> + 0	1 + 2	

CCE study: TCT-signal & simulation tuning

TCT-setup: Measured signal shape vs simulated

Results I: CCE(300/200/120 μm) @ -30° C

CCE(V) @ -30° C: 300N/P

CCE(((()) **((-30° C, 600 – 800 V:** 300N/P

CCE(V) @ -30° C: 200N/P

CCE(V) @ -30° C: 120N/P

CCE(Φ**)** @ -30° C, 600 – 800 V: 120N/P

CCE(\Phi): Operating voltage @ HGCal

Results II: Full depletion voltages

V_{fd}(Φ): 300N/P(meas vs sim) & 120/200N/P

Conclusions

CCE study of irradiated test diodes w/ IR-TCT: Completed for 11 8-inch & 17 6inch samples @ HGCal operational conditions

□ CCE results @ -30° C, 600 V & 800 V:

- **300N/P:** Simulation verifies/predicts IR-TCT data
 - $\circ~$ >10% benefit from operating @ V_{max} @ high Φ (HGCal)
 - N vs P: 300N performs better after ~4e14 $n_{eq}/cm^2 \rightarrow CCE \ge 60\%$ @ V_{default} for HGCal Φ -range
- 200P: 16% benefit from operating @ V_{max} @ ~3.5e15
 - 200P vs 300P @ ~1e16: Similar CCE due to ~equal depletion region
- 120N/P @ ~1e16: 20% benefit from operating @ V_{max}
 - No clear difference observed between polarities
- 300N/P, 200P & 120N/P: CCE ≥ 60% @ V_{max} for HGCal Φ-ranges
- V_{fd}(Φ): Low V_{fd} due to SCSI reason for higher CCE on 300N
 200P not fully depleted even @ V_{max} for HGCal Φ-range
- □ TCAD tuning w/ sensor & IR-TCT parameters: Reproduced transient signals → minimized error sources for neutron irradiation modeling → extend defect model to 1e16 n_{eq}/cm² w/ measured CCE, LC & V_{fd} @ extreme fluences

Back-up 1: Facility crosscheck: α-factor

Back-up 2: LC/Vol - Before/after annealing

Back-up 3: CCE(p-on-n) - Offset-corrected Q_{coll}

Back-up 4: CCE(n-on-p) - Offset-corrected Q_{coll}

Back-up 5: TCAD: 2D-structure & defect model

Type of	Level	$\sigma_{ m e}$	$\sigma_{ m h}$	Concentration	
defect	[eV]	[cm ²]	[cm ²]	[cm ⁻³]	
Acceptor	<i>E_C</i> - 0.525	1.2e-14	1.2e-14	1.55*Φ	
Donor	E_{V} + 0.48	1.2e-14	1.2e-14	1.395*Φ	

[2] R. Eber, PhD Thesis, KIT, 2013

Depth (um)

Back-up 6: 300P vs 200P - Ф≈1e16 n_{eq}/cm²

Back-up 7: CCE(Φ) – TTU vs published study

