

Performance of thin n-on-p planar pixel sensors for the ATLAS ITK

R. Taibah, M. Bomben, F. Crescioli, G. Calderini, L. D'Eramo

Trento 14th workshop for advanced silicon radiation detector

25-27 February 2019, Trento, Italy.

E R O I

Introduction

- ATLAS detector upgrade for High Luminosity phase (HL-LHC) $\rightarrow \mathcal{L}_{instantaneous} = 7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.
- Inner detector replaced with new all silicon Inner Tracker (pixels + strips).
- **ITK requirements** for silicon pixel detectors include:
 - ➢ Higher granularity → Smaller pitch pixels of 50x50µm² or 25x100µm².
 - ➤ Radiation hardness → up to 3x10¹⁵ n_{eq}/cm² for planar sensors.
 - Hit efficiency > 97% for HL-LHC (at Max 600V)

<u>Setup</u>

- Sensors are produced by FBK and assembled at IZM with the RD53a frontend on a single chip card.
- Presented modules were Irradiated at CERN PS Irrad facitility.
- Modules were measured <u>before and after irradiation</u> in a **testbeam setup** at CERN (120 GeV pions) and DESY (5 GeV electrons) .
- Data acquisition setup include Mimosa telescope planes, scintillators for external trigger, Bdaq53 readout, cooling chamber for controlled temperatures at -50 °C.
- Tracks reconstruction using Eutelescope and data is analyzed using Tbmon2 software.
- All modules were tuned before measurement to achieve lowest possible threshold (~1000e).

Modules overview

• RD53 n-in-p planar sensors are produced on 6" wafer by FBK.

Measured modules details:

- thickness: 100µm
- cell: 25x100µm²
- No biasing dot
- Not Irradiated

130-25-noPT

- thickness: 130µm
- cell: 25x100µm²
- No biasing dot
- Irradiated at CERN PS

- thickness: 130µm
- cell: 50x50µm²
- With biasing dot
- Irradiated at CERN PS

Results

Non-Irradiated modules

<u>Hit efficiency vs. bias voltage</u>

- $25 \times 100 \mu m^2$ pixel module with $100 \mu m$ thick sensor, Non-irradiated.
- Tuned threshold:

Linear = 1060eDifferential = 1160e

100-25-noPT

- Depletion voltage for the sensor is
 V_{depletion} =20V.
- Hit efficiency for Linear & Differential FE show similar results.

non-Irradiated

Linear+diff FE

DESY tb

Results

Irradiated modules

Module irradiation

- Irradiation at CERN PS Irrad facility → Inhomogeneous profile + irradiation beam misalignment.
- Fluence map is reconstructed from Beam Profile Monitor (BMP) with the dosimetry results measured on the foil sheet mounted behind the modules.
- Fluence analysis estimates ~20% uncertainty from measurements and fitting.

Y[mm]

Irradiated

Tuning

- Tuning for RD53a chip is performed using the Bdaq53. Scanning processes is performed for each front-end flavor independently.
- Example of threshold distribution for a 25x100µm² irradiated module after tuning.

DESY tb

CERN tb

Irradiated

Analysis regions

- In the testbeam setup the sensors were centered on the particle beam to cover two front-ends at the same time.
- Hit efficiency map at 500V measured at CERN testbeam setup.
- Each front-end was analyzed separately using TBmon2.

130-50-PTLinear FEIn-pixel efficiency maps

Hit efficiency is defined as the fraction of reconstructed tracks crossing a module that have an associated hit in that module.

Thr=1400e⁻

CERN tb

- 2x2 Pixel efficiency map shows the overall hit efficiency of the module .
- At 500V the hit efficiency is <u>95.29±0.16%</u>.
- Significant hit efficiency loss is visible in the biasing structure region.

130-50-PTLinear FEIn-pixel efficiency maps

Hit efficiency is defined as the fraction of reconstructed tracks crossing a module that have an associated hit in that module.

Thr=1400e⁻

CERN tb

- 2x2 Pixel efficiency map shows the overall hit efficiency of the module .
- At 500V the hit efficiency is <u>95.29±0.16%</u>.
- Significant hit efficiency loss is visible in the biasing structure region.

CERN tb

Irradiated

In-pixel efficiency maps

- 2x2 Pixel efficiency maps for a module with 25x100µm² cell size and no Biasing structure. Sensor design is overlaid on the pixel map.
- At 500V the hit efficiency is 98.3±0.4%.
- At 500V pixel efficiency map shows **uniform efficiency** due to the no biasing structure sensor design.

CERN tb

Irradiated

In-pixel efficiency maps

- 2x2 Pixel efficiency maps for a module with 25x100µm² cell size and no Biasing structure. Sensor design is overlaid on the pixel map.
- At 500V the hit efficiency is 98.3±0.4%.
- At 500V pixel efficiency map shows **uniform efficiency** due to the no biasing structure sensor design.

Hit efficiency: Fiducial region

Linear FE

Thr=1400e⁻

 Studying the influence of biasing structure on the hit efficiency → comparing the hit efficiency of the full pixel geometry with the core pixel.

130-50-PT

• Analysis restricted to Linear FE.

CERN tb

• Over all hit efficiency **increases by ~3%** in the fiducial region.

130-50-PT Linear FE

Hit efficiency vs. bias voltage: Threshold effect

- Overall hit efficiency for **50x50µm²** pixel module.
- Hit efficiency vs. bias voltage measured for Linear front-end.
- Tuned threshold:
 - ▶ 1400e⁻ (measured at CERN October 2018)
 - 1180e⁻ (measured at DESY December 2018)
- For lower tuned threshold value:
 - ✓ 15% Higher hit efficiency at 200V
 - ✓ Earlier saturation of hit efficiency at 400V

130-25-noPTCERN tbHit efficiency vs. bias voltage

- Hit efficiency for an irradiated **25x100µm²** pixel module.
- Average fluence on:
 - > Differential FE Φ = 1.3x10¹⁵ n_{eq}/cm²
 - \blacktriangleright Linear FE Φ = 3.5x10¹⁵ n_{eq}/cm²
- Similar tuned threshold value for both front ends of 1300e
- Hit efficiency saturation at 200V for $\Phi = 1.3 \times 10^{15} n_{eq}/$
- Hit efficiency saturation at 500V for $\Phi = 3.5 \times 10^{15} n_{eq}/cm^2$

Irradiated

5

20

ဗ

6

50

60

2

90 Side

[m]

CERN tb

Irradiated

Cluster size and cross talk

- Irradiated 25x100µm² module. Analysis region restricted to linear FE.
- From previous studies cross talk appears for all front ends.
 - Natalia Emriskova, RD53 **Review Open Session**

https://indico.cern.ch/event/769894/contributio ns/3229980/attachments/1765304/2865819/AFE REVIEW CERN test results.pdf

Analysis of cluster size shows probability of cluster size >1 between neighboring pixels.

CERN tb

Irradiated

Cluster size and cross talk

No indication of cross • talk from studying the cluster size.

24. February 2019

<u>Conclusions</u>

- <u>At 500V</u>, <u>linear FE</u>, $\Phi = 3.5 \times 10^{15} n_{eq}/cm^2$, <u>threshold = 1400e</u> with permanent biasing structure shows hit efficiency of 95.29±0.16% while when excluding the biasing dot the hit efficiency increases to 98.4±0.1%.
- $25x100\mu m^2$ sensor with threshold=1250e

 \rightarrow Linear FE with Φ = 3.5x10¹⁵ n_{eq}/cm² \rightarrow hit efficiency about 98%.

→Differential FE with $\Phi = 1.3 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$ → hit efficiency about 99%.

- At <u>200V</u>, irradiated module at <u>Φ = 3.5x10¹⁵ n_{eq}/cm²</u> (linear FE) shows hit efficiency of 94.22±0.69% while with lower fluence of <u>Φ = 1.3x10¹⁵ n_{eq}/cm²</u> (diff FE) it shows **15% increase of efficiency** of 98.7±0.4%.
- Testbeam data (at DESY) for $25 \times 100 \mu m^2$ do not show indications of cross-talk \rightarrow More data might be needed.

<u>Outlook</u>

- Waiting for 2 more modules to be assembled for testbeam measurements in May 2019.
- study the performance of non-irradiated front-end flavors with lowest achievable threshold for each flavor.
- An investigation on threshold homogeneity for RD53A for non-irradiated and irradiated modules is planned in March testbeam.
- Measurements of hit efficiency as a function of **fluence**. Irradiation planned at **Karlsruhe in 2019**:

 $\Rightarrow \Phi = 1 \times 10^{15} n_{eq} / cm^2$ $\Rightarrow \Phi = 2 \times 10^{15} n_{eq} / cm^2$ $\Rightarrow \Phi = 3 \times 10^{15} n_{eq} / cm^2$

• New production of planar sensors from **FBK** arriving in few months.

<u>Acknowledgments</u>

✓ Productions were supported by the Italian National Institute for Nuclear Physics (INFN), Projects ATLAS, CMS, RD-FASE2 (CSN1):

Principal investigators: Marco Meschini, Gian Franco Dalla Betta, Maurizio Boscardin, Giovanni Darbo, Gabriele Giacomini, Sabina Ronchin, Alberto Messineo

✓ Irradiations and testbeam supported by AIDA-2020 Project EU-INFRA Proposal no. 654168

✓ Many thanks to all ITk pixel testbeam community specially LAL group(Dmytro&Anestasia).