

Matteo Duranti, Valerio Formato

Istituto Nazionale Fisica Nucleare – Sez. di Perugia

Outline

Current and future Cosmic Rays Space experiments:
 their needs and their limitations

What we can do with timing in the Tracker

Geant4 simulation and ideas to optimize the layout

AMS-02: A precision, multipurpose, up to TeV spectrometer

AMS-02: A precision, multipurpose, up to TeV spectrometer

AMS-02: A precision, multipurpose, up to TeV spectrometer

AMS-02: Time of Flight

Measures Velocity and Charge of particles

AMS-02: Time of Flight

Measures Velocity and Charge of particles

AMS-02: Time of Flight

Z=1, nuclei

0.4

0.35

0.3

0.25

0.2

$$\frac{\delta M}{M} = \left(\frac{\delta p}{p}\right) \oplus \gamma^2 \left(\frac{\delta_\beta}{\beta}\right)$$

Velocity resolution is crucial for isotopical measurements:

- d and anti-d
- ³He/⁴He
- ⁶Li/⁷Li

 σ_t =160ps @1m

TOF

 σ_{β} =0.1%

 $(\sim \sigma_t = 4ps @1m)$

Aerogel

 $\sigma_{\rm g}$ =0.4%

 $(\rightarrow \sigma_t = 16ps^{r}@1m)$

AMS-02: Silicon Tracker

AMS-02: Silicon Tracker

- 9 layers of double sided silicon detectors arranged in 192 ladders
- ~6 m²
- total of 200k channels for ~ 200 watt
- 10 μ m (30 μ m) spatial resolution in bending (non bending) plane
- momentum resolution ~10% @10 GeV
- high dynamic range front end for charge measurement
- wide temperature range
 (-20/+40 survival, -10/+30 oper.)
- 6 honeycomb carbon fiber plane
- detector material $\sim 0.04 X_0$

AMS-02: Silicon "ladder"

- 1024 high dynamic range, AC coupled readout channels:
 - 640 on junction (S) side
 - 384 on ohmic (K) side
- Implant/readout pitch:
 - 27.5/110 μm ("S"/junction/bending side)
 - 104/208 μm ("K"/ohmic/non-bending side)

192 flight units7 - 15 wafers (28 - 60 cm) each

AMS-02: Silicon "ladder"

27/02/19 Matteo Duranti - TREDI2019

channels needed for each ladder are "merged" into 384.

AMS-02: Ladder hybrids

DAMPE: DArk Matter Particle Explorer

PSD: scintillators
Z, charged-CR from γ

STK: 6 tracking planes + 3mm tungsten γ converter, Z, tracking for charged-CR

NUD: neutron detector to identify hadrons (from electron and γ)

BGO: 308 calorimetric BGO bars (~31 radiation lengths) Trigger, E measurement

In orbit on a Chinese Satellite since 17/Dec/2015

DAMPE: Silicon-Tungsten Tracker-Converter

Tracker:

- $7 m^2$
- 12 layers for single sided microstrip detectors (6 for X and 6 for Y)
- 3 * 1mm W foils
- 70k channels
- 25 W for FE + 35 W for read-out

Layer:

- 4 "quarters"
- 4 ladders per quarter

Ladder:

- single sided
- 320 μm
- 121/242 μ m implant/read-out pitch \rightarrow 35 μ m resolution
- 9.5*38 cm² (4*9.5*9.5 cm²)
- pitch 240 μm
- resolution 40 μm
- 6 * va140 FE chip, 0.3 mW each

14

HERD: High Energy Radiation Detector

Tracker:

- 40 m²
- 200-400k channels
- \sim 100 W for FE
- ~ 200 W for read-out

HERD on the Chinese Space Station (2024-2025):

- LYSO calorimeter (55 radiation lengths, 3 interaction lengths)
- 5 sides PSD
- 5 sides Tracker
- small TRD for hadronic energy calibration

INFN ALADInO: Antimatter Large Acceptance Detector In Orbit

Tracker:

- 80 m²
- 1.5M channels
- ~ 1 kW

HERD on L2:

- LYSO calorimeter (61 radiation lengths,
 3.5 interaction lengths)
- 2π PSD (and ToF)
- 2π Tracker (Spectrometer)
- 3T (0.8T average) B-field by "hot" superconducting magnet (MgB₂)

Timing in an astro-particle tracker

Including the timing into the Tracker of an astro-particle detector permits to:

- substitute (or provide full redundancy to) any other **ToF detector** (i.e. planes of scintillators) in measuring $\beta \rightarrow$ isotopic composition for nuclear species (combined with *E* or *p* measurement);
- solve different problematics as:
 - identification of the hits coming from back-scattering from the calorimeter.
 Example: identify photons without vetoing when large back-scattering (DAMPE: photons lost due to back-scattering 30%@100GeV, 50%@1TeV);
 - **e/p identification**. The presence of a low energy (i.e. θ <1) back-scattered particles (i.e. hadrons) from a shower identifies the CR as hadron;
 - solve the "ghost" problem, typical of a microstrip silicon sensor, from backscattering, pile-up particles, etc...;

MC Simulation

MC Simulation:

- based on Geant4 (via Generic Geant Simulation, GGS, by N.Mori https://baltig.infn.it/mori/GGSSoftware)
- simple geometry "a la DAMPE"
- only tracker + calorimeter

Silicon Tracker BGO calorimeter 2 mm 2 cm

Informations saved:

- energy lost and deposited
- spatial coordinates
- timing

Back-scattering

Back-scattering

Simulating a timing resolution (gaussian with σ =100ps)

A simple cut (e.g. 550ps from the first), removes:

- \sim 40% of the hits
- ~ 90% of the backscattering hits

What we can do...

new FE + current microstrip silicon detectors: develop a custom
 FE or borrow something developed for something similar, e.g.

INFN-TO chip:

- up to 25ps resolution \rightarrow ~ 100ps with our sensors (to try!)
- 3mW per channel (10 times our current FE)

- LGAD + custom FE (assuming INFN-TO chip):
 - 30ps (?) (far beyond 160ps of AMS ToF)
 - 3mW per channel (10 times our current FE)

How to stay into the power limitations?

- basic capabilities kept
- isotopic separation / β resolution degraded
- timing redundancy and efficiency reduced

- "timing" layer
- "normal" layer

How to stay into the power limitations?

Adopt the "multiplicity" concept also for the timing coordinate:

- "group" different strips into a single time measurement
- optimize the "pattern"for the grouping (using the MC simulation

23

Conclusions

- The advantages coming from timing layers into the Tracker of an astro-particle detector are clear
- We want to "couple" our sensors to a "modern" FE time-capable and measure the time resolution

- A Geant4 simulation is being developed to:
 - evaluate the costs/benefits between the "lazy" (~ 100ps) and the LGAD (30ps) solutions
 - optimize the geometry to bring the power consumption inside the typical limitations of a space experiment

Backup

AMS-02: Cooling with 2-phases CO₂ pumped loop

AMS-02: Front End ("hybrids")

AMS-02 Front End circuit:

- preamplifier-shaper ASICs, VA (this is the expensive part of the hybrid). Each VA reads 64 micro-strips;
- VA digital control sequence circuit, HCC;
- doupling capacitor pad, RCAMS (can be easily removed if silicon already in DC);
- operational amplifier to send a differential signal to the ADC board (TDR), AD8052;
- a temperature sensor, DS1820;
- two versions: "grounded" for the junction side and "floating" the ohmic, biased, side. Up to 10 VA's per side;

AMS-02: Charge collection (few months of data)

AMS-02: Data Reduction Board (TDR2)

analog signal in from a ladder

- Collect analog data and digitize it (90 µs irreducible dead time)
- Perform online data compression
 - Remove Pedestals
 - Calculate and Remove Common Noise
 - Search Clusters
- Up to 5 KHz trigger rate in compressed mode

compressed digital out to crate backplane

AMS-02: Silicon Tracker – Back of the envelope

- ~6 m²
- total of 200k channels for ~ 200 watt
- 100 μ m pitch \rightarrow 10 μ m (30 μ m) spatial resolution in bending (non bending) plane

BOTE:

- x-side, s=sqrt(6)
- maximum length of ladders: I=0.5 m
- #ladders per y-side (or layers) = s/l
- pitch: $p = 100 \mu m = 10^{-4} m$
- #channels_{strip} = s*(s/l)/p=120k
- \rightarrow strip = 2*120k ~ 10⁵
- \rightarrow pixel = 120k*120k ~ 10¹⁰

HERD: layout

ALADINO: Calorimeter

ALADINO: Magnet

Benefit from the R&D of high temperature superconducting magnets (MgB₂) for space applications (T \approx 10÷20 °K)

Ghost hits/tracks

AMS-02: Silicon "ladder"

- $C_b = 7pF$
- $C_{\text{strip}} = 1.2 \text{pF/cm}$ $\rightarrow C_{\text{b}} + C_{\text{strip}} \sim C_{\text{strip}}$
- $C_{coupling} = 700pF$ $\rightarrow I/C_{strip} + I/C_{coupling} \sim I/C_{strip}$

192 flight units7 - 15 wafers (28 - 60 cm) each

