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Tracking particles at fluences 1E16 — TE17 n/cm?

At HL-LHC, in the inner layers of the tracker, fluences will be of the order of
® = 2-3E16 n/cm?

=2>In the present plan, Silicon detectors are replaced
once at HL-LHC.

> At FCC (2) fluences will be much higher, let’s suppose ® = 1E17 n/cm?:
do we replace the Silicon sensors 10 times at FCCe

Question:
Can we design a Silicon tracker that can still work at
® =1E17 n/cm2?



Why is it possible? (maybe)
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The bottom line is:
Silicon irradiated at fluences 1E16 — 1E17 n/cm?2 does not behave as expected,

it behaves better
Extrapolations from Silicon sensors irradiated in the fluence range 1E14 - 1E15 n/cm?

pred]c’[ a hope|ess situation G. Kramberger et al., JINST 8 P08004 (2013).
140 7
Examples: .
= 100
1) Leakage current saturates : ’
_ ‘ e At ar v s 1 v § 20 . :_zsoc
: 0t TaEe 2 e
2 ‘ | Swartz et al 0
2) Trapping slows down 2 | |onee 0 0 e, ® ™
g ‘ @ this study -—+—-
® 40| 1.7 ns
1 2 W. Adam et al 2016
" JINST 11 P04023
0 10 20 30

fluence (10 cm? neq)



INEN . .
C Degradation of the CC(V) with fluence
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i Example: CCE in Silicon up to 2E16 n/cm?2
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S. Wonsak, RD50, 02-04 Dez. 2015, CERN

Note: regardless of the sensors thickness, the signal at 2E16 n/cm2
is almost a constant, 3-5k electrons.

N. Cartiglia, INFN Torino, Italy, TREDI 2019



A Why are the sensors still working?
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C The depletion is ~ 30 micron for every sensor thickness
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It should not work, however it does...
Less doped?e Smaller mobility?
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The plan: use very thin sensors and gain..

At high fluences, 1E16 - 1E17 n/cm?, leakage current, bulk doping, and charge trapping
are the enemies

=> use thin sensors U . =
=> Signal oo small € gain
drift

«—|—
3D sensors decouple drift path and total charge
deposition by collecting the charge carriers 1
perpendicularly to the particle path. ‘l'

Particle path

Can we decouple drift path and total charge deposition using gain?

Why this can be possible?

» The acceptors creation by irradiation slows down at high fluence, so the bulk is not as
doped as we forecast

» Using Vbias, we can still start multiplication if the mobility stays high enough

» The charge to be delivered is rather small: ~ 1-2 fC
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How to obtain gain in silicon: E ~ 300kV/cm

1) Use external bias:
E crifical =~ 10-15 V/um

Possible only in thin sensors:
50 microns need 500-750V

2) Use Gauss Theorem:

E=300kV/cm=> g~ 10" /cm3

n-in-p

Traditional silicon detector

Gain in the gain
layer

7

Ién

T
A

”)' + f””’
P <101 Ncms

n-in-p

= it
= it
=
= it

+++++

}

|

Low gain avalanche detectors

The doping of the bulk will generate the field



/—7 Gain and E;. 4 in Si detector: combination of Bias and doping
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_~ Effect of radiation: increase bulk doping and gain layer removall
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Let’s start with an LGAD, n-in-p
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Fluence ~ 1E15 n/cm2 removes the gain layer
and add p-doping to the bulk
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Fluence ~ TE16 n/cm2 the bulk is so

doped it cannot be depleted
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Gain and E; 4 IN vArious sensors
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Controlled gain: it happens when the Ese g is controllable by Vy,igs and the
contribution of the doping to the field accounts for a part (~ 50%) of the total Eseq
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P E Fields vs irradiation

Neutron irradiated ATLASO7 mini detector
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The field changes a lot, due to the appearance of the “double
junction”, caused by high leakage current.
Look at the first 20-40 um: very uniform field
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i What type of Si detector can deliver 1fC from un-irradiated

to a fluence =1E17n/cm?2

We need to have a plan to deliver at least1 fC throughout the
sensor lifetime. In thin sensors you need to have always gain

Can we use a thin PiN diode?

In high resistivity silicon, the field is almost

constant in the sensor,

=> |t reaches the critical value at the same
voltage everywhere in the detector

=> It burns the sensors

E Amplitude IEl [kV/cm] - Dashed: breakdown field
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Is gain in high-resistivity PIN reliable?

W18 4 Ring bruciati

Not really.... We cannot start with a thin PiN diode
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The plan - |

« Select a thickness that can still be

depleted after a fluence ~ 1E17 n/cm?2 700 |
 Bias should be in control of the _ 600 |
multiplication mechanism fézzz _
Assuming standard rate of acceptor creation 300

a thickness of ~ 20 micron should be OK

Such thin detector will not provide enough charge
= use an LGAD of ~ 20-30 micron (0.2 -0.3 fC)
= Gain ~5-10is enough

— ~1E15 n/cm?
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Let’s start with an LGAD, n-in-p
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Less gain layer and more p-doping to the bulk
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The plan - |l

2) Inthe ~0.5- 1E16 n/cm?2
« The gain layer doping is removed
« The gain from V4 and the bulk
doping starts to be important

N ~ 1E16 n/cm?

EField
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\E\b alet
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the bulk contribution start to be important

3) Above 5-10 E15 n/cm2: this is the fun part...

Condition to have gain:

1. ngh Eﬂe|d

2. the width of a space charge region
>> the mean free path between two
ionizing impacts

A ~5-10E16 n/cm?

EField

Juncﬂon
\

Thickness

Limiting fluence: Bias barely manages to deplete the sensors

Iradiation decreases the mean free path, so even if the field is high, the sensors are not
in breakdown, the gain is quenched, but maybe still reachable in thin sensors
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Gain termination for 100% fill factor: frenches

Trench isolation technology

* Typical trench width <1 um

e Max
* Tren

Si3N,, PolySi

CMM

CENTRE FOR MATERIALS AND MICROSYSTEMS

Trenches (the same technique used in SIPM):
- No pstop,
- No JTE = no exira electrode bending the field lines

Current v'ersion R&D goal

A Q gain area /

JTE + p-stop design Trench design

Aspect ratio: 1:20
ch filling with: SiO,,
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Conclusions

Goal: design a simple sensor that can deliver good signails for fluences 1E16 - 1E17 n/cm?
In the sensor lifetime, there will be the interplay of 3 types of gain:

Due to Gain Layer
Due to Vbias
Due to the bulk doping

Below 2E15 n/cm?

=>» Start with thin LGAD sensors

=> It looks possible to have a gain of ~ 5 without breakdown
= Viuies and gain layer doping controls gain

Range 5 - 10E15 n/cm?2

=>» The initial gain layer is disactivated,

= gain comes from Vyiqs and bulk doping

above 1E16 n/cm?

=> is the gain sfill there?

= Is the mobility decreasing to a point where no gain is possible?
= Damaged bulk acts as a quenching resistore

= No holes multiplications?

Ga n:
- Gain Iayer
\ Bulk
e Trenches
+++

n-in-p

25 microns LGAD trench sensor
Good signal above 1E16 n.o/cm? ?
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