Measurement of effective space charge concentration vs. neutron fluence in p-type substrates from LFoundry

I. Mandić et al.,

Jožef Stefan Institute, Ljubljana, Slovenia

Introduction

- RD50 submitted CMOS pixel detector prototype chip *RD50-MPW1* in 150 nm LFoundry process
- chips were produced on p-type wafers in 2 different initial resistivities:
 ~ 500 Ωcm and ~1.9 kΩcm
- chips were irradiated in reactor in Ljubljana to several different fluences ranging from 1e13 n/cm² to 2e15 n/cm²
- depletion depth at different bias voltages was measured with E-TCT
- N_{eff} estimated from depletion depth and studied as a function of neutron fluence

Measurements made with:

- 3x3 pixel array of 50 μm x 50 μm pixels
- central pixel to read out
- Outer pixels connected together

I. Mandić, TREDI 2019, Trento, February 2019

RD50 CMOS chip

Scheme of a pixel

- Passive pixel: same scheme as active pixel except there is no transistors in the wells
- DNWELL connected to bias voltage and to the amplifier via bias-T
- P-substrate connected to ground

Chips are not thinned, back plane not processed, substrate biased through the implants on top

Detector current before irradiation

Current measured on outer 8 pixels of 3x3 pixel array (50x50 um² pixel)

- high current before irradiation, several reasons for this, more detail:
 - → talk by Matthew Lewis Franks later today
- chips were exposed to 2 Mrad TID from background radiation in the reactor
 - → at zero reactor power there is no neutrons, only photons
 - → leakage current smaller after 2 Mrad TID irradiation

(more details: <u>www.particulars.si</u>)

Side view:

Before irradiation

Central pixel connected to readout amplifier

Charge collection profile

- all 9 pixels connected to readout amp. ٠
- bias = 50 V (2 Mrad TID) ٠

140

W10

Before irradiation

- charge collection profile measured across the middle of central pixel
- depletion depth: FWHM of charge profile

Fit:
$$d = d_0 + \sqrt{\frac{2\varepsilon\varepsilon_0}{e_0 N_{eff}}} \cdot V_{sub}}$$
 extract N_{eff}

parameter d_o : built in voltage, finite laser beam width...

W9:

 N_{eff} = (1.8 ± 0.3)· 10¹³ cm⁻³ Resistivity: 720 Ωcm ± 150 Ωcm

W10:

 N_{eff} = (1.0 ± 0.2)· 10¹³ cm⁻³ Resistivity: 1.3 kΩcm ± 0.15 kΩcm → somewhat lower than nominal 1.9 kΩcm

No observable effect of 2 Mrad TID on N_{eff}

Chips irradiated in reactor in Ljubljana

- fluences: 1e13, 2e13, 5e13, 1e14, 2e14, 5e14, 1e15, 2e15,
- each fluence separate chip

➔ no efficiency gaps between pixels

<u>Annealing</u>

→ depletion depth increases by up to ~ 20 % after annealing for 80 minutes at 60 C

After irradiation with neutrons

• depletion depth vs. bias voltage

W9 (lower resistivity)

• measured after annealing for 80 min at 60°C

W10 (higher resistivity)

- depletion depth changes with irradiation
- acceptor removal effects

<u>N_{eff} vs. fluence</u>

Fit:
$$N_{eff} = N_{eff0} - N_c \cdot (1 - exp(-c \cdot \Phi_{eq})) + g_C \cdot \Phi_{eq})$$
Neff0 N_{eff0} c g_c W92.2e13 cm⁻³0.752.1e-14 cm²0.031 cm⁻¹W101.2e13 cm⁻³0.4114 e-14 cm²0.016 cm⁻¹

Compare with other measurements

- this measurement consistent with other substrates with similar initial resistivity
- low resistivity 20 Ω cm (CHESS2, AMS): improves with fluence in this fluence range but large initial N_{eff}
- resistivity ~ 200 Ω cm, (CHESS2, AMS): smallest change of N_{eff} in this fluence range

Summary for CMOS, diodes, LGAD

- LRRD50 fit into the summary plot:
 - \rightarrow c drops with increasing N_{eff0}
 - \rightarrow c higher after proton irradiation

Epi diodes:

- P. Dias de Almeida, 32nd RD50 Workshop, 2018
- <u>https://indico.cern.ch/event/719814/contributions/3022586/</u>
- K. Kaska

http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/1633435

LGAD:

• G. Kramberger, JINST Vol. 10 (2015) P07006

Pad diodes:

• G. Kramberger, 26th RD50 workshop, Santander, 2015 https://indico.cern.ch/event/381195/contributions/905665/

CMOS:

- A. Affolder et al., JINST 11 P04007 2016
- I. Mandić et al., JINST 12 P02021 2017
- E. Cavallaro et al., JINST 12 C01074 2017
- B. Hiti et al., JINST 12 P10020 2017
- B. Hiti et al, (NIMA) <u>https://doi.org/10.1016/j.nima.2018.07.022</u>

See also:

- M. Moll, IEEE TNS 65 (2018) p.1561 <u>https://doi.org/10.1109/TNS.2018.2819506</u>
- G. Kramberger, HSTD11, Okinawa, 2017 <u>https://indico.cern.ch/event/577879/</u>
- Y. Gurimskaya, 33rd RD50 workshop https://indico.cern.ch/event/754063/contributions/3222777/

Summary

- measurements with irradiated pixel detector structures on *RD50-MPW1* chip by LFoundry, two initial resistivites
- TID irradiation by background radiation in the reactor (no neutrons)
 - → smaller leakage current measured after 2 Mrad TID
 - may help to identify the source of the excessive detector current measured before irradiation
 - → no effect of 2 Mrad TID on depletion depth
- neutron irradiation
 - \rightarrow uniform charge collection efficiency across pixel structure \rightarrow no efficiency gaps observed
 - → depletion depth increases (~ 10 %) after annealing for 80 minutes at 60°C
 - \rightarrow N_{eff} measured with E-TCT and studied as the function of fluence
 - → acceptor removal parameter *c* extracted
 - results consistent with previous measurement
 - → acceptor removal constant higher for substrates with lower initial resistivity

Depletion depth vs. fluence

• depletion depth at 100 V

 \rightarrow calculated from function fitted to depletion vs. bias (see slide 12):

