

Univerza v Ljubljani

Fakulteta za matematiko in fiziko

Development of the BCM' abort and luminosity system at the HL-LHC based on poly-crystalline CVD diamond pixel-pad detectors

14th Trento Workshop on Advanced Silicon Radiator Detectors, 25. 02. 2019

Bojan Hiti (Jožef Stefan Institute, Ljubljana, Slovenia) for ATLAS BCM'

- Current ATLAS abort system: Beam Condition Monitor (BCM)
 - 2 stations 6.25 ns from IP
 - Dumps the LHC beam if ATLAS endangered (scattered beam out of time measurements ± 12.5 ns)
 - Also used for luminosity measurement
- **10 x 10 mm²** single pad pCVD diamond sensor → occupancy at high pile-up is problematic (1.5 MIPs / *pp* collision)
- After HL-LHC upgrade (2024—2026) luminosity will increase by factor 5

BCM' upgrade for HL-LHC

- pCVD diamond sensor, segmented into 8 pads \rightarrow flexible acceptance •
- Custom analogue front end **BCM' ASIC** (designed by OSU)
 - 65 nm TSMC process, 4 readout channels
 - Separate front end functionality for **Abort** (high signals) and **Luminosity** (low noise)
 - Current amplifier; < 1 ns rise time, fast (\sim 10 ns) baseline restoration
 - Desired sub-ns time resolution for beam diagnostics
 - Large pitch bump bonding or wire bonding
- First prototypes available in September 2018 •
- Presenting first results from beam tests at CERN SPS and PSI in October 2018

diamond

ASIC

CERN H6 test beam

- CERN SPS H6 test beam: 120 GeV hadrons
- KarTel (Mimosa) beam telescope
 - Tracking resolution $\approx 3 \ \mu m$
- DRS 4 analog readout
 - 3 GS/s acquisition rate, 700 MHz bandwidth
- DUT:
 - + 1000 V bias voltage
 - DUTs pumped with Sr90 before measurements
 - Output oscillated if more than one channel per chip active → Recorded two channels per run
- Dataset:
 - All channels measured (separate runs)
 - several 10k tracks per channel

Signals and pick-up

- Large pick-up from the setup/environment
- Same shape in all channels → Mitigation by subtracting two waveforms
- (ch1 ch2) or (ch2 ch1) depending on track position
- Pick-up reduced by factor 2

Signal measurement

- Average waveform of 1000 acquisitons
- Select an integration window around the peak [t_{min}, t_{max}]
- Signal = Integral around the peak

$$S = \frac{1}{t_{\max} - t_{\min}} \int_{t_{\min}}^{t_{\max}} U dt$$

- Long integration window [- 6 ns, 6 ns] to mitigate for noise
- Hit criterium: signal threshold = 4σ above noise

Efficiency measurement Chip 2 channel 1 (1000 V)

Bojan Hiti (IJS)

BCM'

7

Chip 2 channel 3

C2-1

C1-3

PSI test beam

- High Intensity Proton Accelerator (HIPA) at PSI, beam line PiM1, 260 MeV/c pions
- PSI beam telescope (150 x 100 μ m pixels) + multiple scattering \rightarrow lower resolution
- DRS 4 readout, modifications to reduce ringing
- Measurements at positive and negative bias voltage: ± 200 V, ± 300 V (sample 1), ± 500 V, ± 1000 V (sample 2)

Thanks to ETH for measurements and analysis!

Waveforms at PSI

- Much lower noise than at CERN no pickup
- ~ **1.4 ns** Average rise time (20 % 80 %),
- DRS 4 analog bandwidth (700 MHz) may be the limiting factor in the rise time measurement
- Baseline restoration after 10 ns

• Analysis: Integration time [-1.5 ns, 3 ns]

Signal Rise Time

Signal Rise Time

- Rise time (20 % 80 %) ≈ 1 ns
- Improves with bias voltage very few outliers at 1000 V

Signal Rise Time

Charge measurement + 200 V

Pulse Height with Pedestal Correction

800

- Charge measurement in **fiducial region**
- 10 % difference for different sign of V_{bias} at low voltages (0.4 V/µm)
- Distribution fitted with convoluted Landau + gaussian
- Noise distribution independent of bias voltage, offset is a feature of DRS 4

Signal spectra at 1000 V

- At 1000 V signal spectrum is the same for both polarities
- Small pedestal due to low tracking resolution

Signal summary

Diamond 1

		Mean		
Chip	Bias [V]	Signal [au]	Noise [au]	SNR
1	+200 V	14.07	1.15	12.23
2	+200 V	36.52	2.73	13.37
1*	+200 V	13.73	1.03	13.33
2*	+200V	13.66	1.15	11.88
1	-200 V	12.04	1.28	9.40
2	-200 V	30.12	2.70	11.16
1*	-200 V	12.23	1.18	10.36
2*	-200 V	10.18	1.10	9.25
1	+300 V	21.93	1.21	18.12
2	+300 V	56.87	2.67	21.30
1	-300 V	16.53	1.26	13.12
2	-300V	44.62	3.01	14.82

Diamond 2

		Mean			
Chip	Bias [V]	Signal [au]	Noise [au]	SNR	(Mean)
1	+500V	35.16	1.02	34.47	
2	+500V	38.43	1.15	33.42	
1	$+1000\mathrm{V}$	45.62	1.15	39.67	
2	$+1000\mathrm{V}$	47.16	1.06	44.49)
1	-500 V	33.10	1.18	28.05	
2*	-500V	24.32	1.21	20.10	
1	-1000V	44.96	1.12	40.14	
2	$-1000\mathrm{V}$	45.75	1.12	40.85	ノ

S/N ratio = **mean** signal / noise RMS

At highest bias voltages S/N ≈ 40 (mean)

Timing resolution: $t_{rise} / (S/N) = 1.4 \text{ ns} / 40 = 35 \text{ ps} \rightarrow \text{very promising}$

Efficiency vs. threshold

- Efficiency improves from 300 V (0.7 V/µm) \rightarrow 1000 V (2 V/µm)
- Inefficiency in part due to low tracking resolution

Interchannel coupling

C2-1 C2-2 C2-3 C2-4 C1-3 C1-4 C1-4 C1-4 C1-1 C1-1

- Couplings to the neighbour pad observed cross talk on the sensor suspected
- Similar behaviour observed at SPS
- Small signals every time a particle hits the neighbour pad

Toward the BCM' module

• Module = Sensor + analogue front end + digitization + data transmission

- Use "existing" components:
- **PicoTDC**: time-to-digital converter (TDC) developed by CERN
- Compatible with lpGBT
- 65 nm TSMC process
- 12 ps inherent time resolution
- 32 channels, selectable between measurement of
 - Time of arrival
 - Time over threshold
 - BCM' requires 16 channels

- Successfully demonstrated functionality of the first BCM' front end prototype
- > 99 % efficiency measured in the test beam
- S/N (mean) = 40 before irradiation
- Good timing performance
 - Rise time 1.4 ns
 - Baseline restoration 10 ns
 - < 100 ps timing resolution is already achievable
- Further analogue front end submissions planned
- Module production using common components: PicoTDC, lpGBT

BACKUP

Chip 1 ch. 2 + Chip 2 ch. 2

