Temperature and frequency dependent CV measurements of highly irradiated ATLAS strip detectors and diodes for impedance spectroscopy

Albert-Ludwigs-Universität Freiburg

Sven Mägdefessel

Riccardo Mori, Liv-Wiik Fuchs, Ulrich Parzefall

14th "Trento" Workshop on Advanced Radiation Detectors

Motivation

- Capacitance vs. Voltage (CV) measurements well established for sensor characterisation
- Provide doping level and depletion voltage

Motivation

JNI

- Capacitance vs. Voltage (CV) measurements well established for sensor characterisation
- Provide doping level and depletion voltage

Motivation

- Capacitance vs. Voltage (CV) measurements well established for sensor characterisation
- Provide doping level and depletion voltage
 - Several problems for irradiated devices

- Measure highly irradiated sensors
 - Compare diodes, strip detectors and 3D detectors
 - Understand frequency behaviour
 - Investigate temperature behaviour
 - Check whether reliable doping level or depletion voltage determination possible
- Also establish setup usable for preproduction and production quality assurance for the ATLAS ITK upgrade

- Designed & assembled setup for measuring IV and CV:
 - Combination of chiller and peltier elements
 - Contacting sensor via needles
 - Elimination of humidity by nitrogen flushed glove box
 - Temperatures down to -45°C
 - ► Frequency range of LCR for capacitance measurement (20 Hz 1 MHz)
 - Sensors up to 8" size

Low Frequency Performance

- Several technical improvements to suppress electronic coupling
 - Electromagnetic shielding
 - Insulation layer
 - Constant peltier current
 - Eliminating ground loops
- Result in
 - Stable low and mid frequency performance
 - High frequency drop will be discussed later

- Production of lattice defects (trap levels) by impinging irradiation:
 - Vacancies
 - Interstitial atoms
 - Clusters

Silicon Band Structure

- Maximum contribution of E_t if capture time τ matches measurement frequency f
- ▶ Minimum contribution if $f << \tau^{-1}$ (→ low frequencies desired)

Reason of the High Frequency Deviation

- Comparison of unirradiated Diode and Strip Detector:
 - Diode does not show high frequency drop
 - Are the strips and bias resistors responsible?

Reason of the High Frequency Deviation

- Comparison of unirradiated Diode and Strip Detector:
 - Diode does not show high frequency drop
 - Are the strips and bias resistors responsible?

Calculation of the phase θ of the impedance:

Reason of the High Frequency Deviation

- Comparison of unirradiated Diode and Strip Detector:
 - Diode does not show high frequency drop
 - Are the strips and bias resistors responsible?

Calculation of the phase θ of the impedance:

Effect of Radiation Damage on Capacitance

- Diode (NitroStrip)
 - Expected increase only at low frequencies
 - At high frequencies no voltage dependence

- Strip Detector (ATLAS12 mini)
 - Larger frequency dependence
 - Increase also only at low frequencies
 - CV measurements not sufficient anymore

Effect of Radiation Damage on Phase

- Diode
 - Decreasing resistive behaviour with increasing voltage in low frequency range
 - Peak of resistive behaviour around 1kHz
 - Active defect

- Strip Detector
 - Similar behaviour in low frequency range
 - Additional peak in high frequency range
 - → Only due to strips?

Effect of Radiation Damage on Phase

- Diode
 - Decreasing resistive behaviour with increasing voltage in low frequency range
 - Peak of resistive behaviour around 1kHz
 - Active defect

- Strip Detector
 - Similar behaviour in low frequency range
 - Additional peak in high frequency range
 - → Only due to strips?

Comparison of IV, CV and Phase

- Measured at -20°C & 25Hz
- Capacitance increases above 700V
- Coincides with turnover point of IV
- Phase also shows increasing resistive behaviour at this voltage

Effect of Fluence on Phase

- Diodes measured at -20°C
- In low frequency range:
 - ► The higher the fluence the more resistive
- The higher the frequency the less fluence and voltage depence

Frequency [Hz]

Temperature Dependence

REIBURG

- Slowing down of carrier capture
- High frequency peak shifts
- Caused by strips and interaction with defects

Comparison of Trap Energy Levels for Different Fluences

- Different energy levels for low and high frequency peak
 - Different defects contributing
- ► No fluence dependence for low frequency peak
- Fluence dependence for high frequency peak

Doping Determination

- Doping fit only converges in low frequency range
- Same temperature dependence as phase
- Values consistent with expectation

Summary & Outlook

- Strong frequency dependence
 - For strip detectors compared to diodes at high frequencies
 - Allows determination of effective energy depth of trap levels
- ► Temperature dependent high frequency behavior for strip detectors
- Measurement of full depletion capacitance at high frequencies for irradiated devices
- Ability to measure doping concentration of highly irradiated sensors with low frequencies (the lower the better)
- Outlook:
 - Finalize 3D measurements
 - Investigate annealing
 - Compare to simulations
 - Compare with TSC measurements

Backup

UNI FREIBURG

- Current vs. Voltage (IV)
 - No breakdown for unirradiated strip detector
 - Linear increase for irradiated strip detector

- Capacitance vs. Voltage (CV)
 - Measurement via LCR oscillating circuit with selectable frequency
 - Quadratic inverse depiction enables determination of doping concentration and depletion voltage

