

February 26th 2019

14th Trento Workshop on Advanced Silicon Radiation Detectors

Javier Fernández-Tejero^a, Vitaliy Fadeyev^b, Celeste Fleta^a, Johannes Hacker^c, Miguel Ullán^a, Yoshinobu Unno^d

^a Centro Nacional de Microelectrónica (IMB-CNM), CSIC, Barcelona, Spain
 ^b Santa Cruz Institute for Particle Physics (SCIPP), Santa Cruz, California, USA

^c Infineon Technologies Austria AG, Villach, Austria

^d IPNS, KEK, Tsukuba, Ibaraki, Japan

Outline

Framework

- Development of Strip Sensor Technologies for HL-LHC
- Key Parameters of Strip Sensor Technology

□ Layout Design

Microelectronic Test Structures for Technology Validation

Results

TREDI2019

CUUG

- Monitor Diode
 - Full Depletion Voltage (V_{FD}) Gamma Influence
 - Effective Doping Density (N_{eff}) Gamma Influence

Sensor Edge

• Breakdown Voltage (V_{BD}) vs. Edge Distance – Proton Influence

Metal-Oxide-Semiconductor (MOS) Capacitor

- Flat Band Voltage (V_{FB})
- Field Oxide Capacitance (Cox)

Gate-controlled Diode

- Flat Band Voltage (V_{FB}) Gamma Influence
- Surface Generation Current Gamma Influence

□ Conclusions

_	Framework								
Development of Strip Sensor Technologies for HL-LHC									
•	One order of magnitude more data will be collected in the new HL-LHC ^[*]								
• Increased radiation damage expected for the new sensors (10 times higher than LHC)									
 Development, fabrication and assembly of new strip sensors needed 									
	•				ures for teo	chnology evaluat	ion and devel	opment durin	g
\triangleright		rket Survey			oncor pro	production on wa	ll for the nurn	and of qualit	
		nce/control	-		sensor pre-	production as we	an, for the purp		у
			• •	-	ures desiai	ned at CNM-Barc	elona, and in	cluded on th	е
		•			•	n of Infineon as se			
\triangleright									
				LHC			HL-L	.HC	
	Run 1		R	un 2		Run 3		Run 4 - 5	
		LS1	13 TeV	ETS 13.5-14 TeV	LS2	14 TeV	LS3	14 TeV er	nergy
_	8 TeV	splice consolidation			injector upgrade cryo Point 4	cryolimit interaction	HL-LHC	5 to 7 x nominal	
7 TeV		button collimators R2E project			DS collimation P2-P7(11 T dip.) Civil Eng. P1-P5	regions	installation	luminosity	
2011	2012	2013 2014	2015 2016	2017 2018	2019 2020	2021 2022 2023	2024 2025 2	026 2037	
						radiation damage			
	75% nominal	experiment beam pipes	nominal luminosity		experiment upgrade phase 1	2 x nominal luminosity	experiment upgrade phase 2		
	luminosity				1				
	30 fb ⁻¹			150 fb ⁻¹	I.	300 fb ⁻¹		3000 fb ⁻¹ integra	ited osity
				Ta	l				
	1 A A66				day				
	(14 th)	Irento Wo	orkshop	on Advar	nced Silic	on Radiation	Detectors)		

[*] The HL-LHC Project, https://hilumilhc.web.cern.ch/about/hl-lhc-project

Javier Fernández-Tejero (CNM-Barcelona) – TREDI2019 – February 26th

Framework

-

- g
- е

Layout

Sensor Edge

Framework	Layout	Diodes	Sensor Edge	MOS / Gate

Layout Design

Microelectronic Test Structures for Technology Validation

(Test structures distributed accross the wafer)

MONITOR DIODES

- 8x8 mm² Diode, p-type substrate, 300 µm thickness
- Central metal opening for laser tests
- Guard Ring pads included
- Parameters to control:
 - Leakage Current
 - Full Depletion Voltage (V_{fd})
 - Effective Doping Concentration (N_{eff})
 - Breakdown Voltage (V_{BD})

SENSOR EDGE TESTS

- 5 2x2mm² diodes with variations of the edge distance
- 2 different test structure sets designed, with and without Guard Ring (GR)
- Designed to study the influence of the sensor physical edge (respect to the active area)

Javier Fernández-Tejero (CNM-Barcelona) – TREDI2019 – February 26th

ed Diodes

CUU

Microelectronic Test Structures for Technology Validation (cont'd)

(Test structures distributed accross the wafer)

STRIP TESTS

- Designed to study most of the (single) strip parameters
- Parameters to control:
 - Bias Resistance (R_{bias})
 - Metal Resistance (R_{metal})
 - Implant Resistance (R_{implant})
 - Coupling Capacitance (C_{coupl})
- Flat Band Voltage (V_{fb}) or Oxide thickness (t_{ox}) can be also extracted

MOS

Capacitor

Designed to study the surface current

Strip Implant Resistor

 2x2 mm² gated-diode + 1x1 mm² gateddiode (active area with increased perimeter-to-area ratio). A pair of these gated-diodes with metal gate and other pair with poly-Si gate

Coupling

Capacitor

Metal Resistor

- Parameters to control:
 - Flat Band Voltage (V_{fb})
 - Surface Generation Currents

Javier Fernández-Tejero (CNM-Barcelona) - TREDI2019 - February 26th

Bias Resistor

Dose	Unirradiated	10 MRad	35 MRad	70 MRad	4.20E+12
					4.00E+12
V _{FD}	285 V	280 V	255 V	235 V	3.80E+12
N _{eff}	4.13.10 ¹² cm ⁻³	4.06·10 ¹² cm ⁻³	3.70·10 ¹² cm ⁻³	3.41·10 ¹² cm ⁻³	5.60E+12
					3.40E+12 3.20E+12

Influence of high gamma irradiation:

- V_{FD} and N_{eff} decrease
- Displacement damage probably due to secondary particles (electrons)

Javier Fernández-Tejero (CNM-Barcelona) – TREDI2019 – February 26th

3.00E+12

0

10

20

30

40

50

60

80

70

Gamma dose [MRad]

- Pre-irradiated diode with lower edge distance, showing "soft" breakdown at 900 V
- After proton irradiation, increase of leakage current, but also the breakdown voltage
 - Slim Edge (SE) distance for Infineon technology tested with good results
 - <u>Further tests</u>: Planning measurements biasing above 1000 V

TREDI2019

Javier Fernández-Tejero (CNM-Barcelona) – TREDI2019 – February 26th

- Pre-irradiated diodes showing "soft" breakdown at 700-750 V, and breakdown at 900 V
- After proton irradiation, increase of leakage current but also the breakdown voltage
- Infineon guard ring effectively protects the device from premature breakdowns
- <u>Further tests</u>: Planning measurements biasing above 1000 V

TREDI2019

Results: MOS Capacitor

- MOS capacitor with the same dielectric as the inter-strip oxide ("field oxide") in the main detector
- For determination through CVHF measurements of relevant device parameters:
 - Field oxide capacitance C_{ox} and flat band voltage V_{FB}
- And extraction of:
 - Oxide thickness t_{ox}
 - Oxide charge density N_{ox}
 - (Through ΔV_{FB}) ΔN_{ox} induced by ionizing dose

MOS / Gated Diodes

MOS capacitor non-irradiated: $V_{FB} \approx -0.5V$

<u>Further tests</u>: Measurement of irradiated samples

CUUQ

gate

Results: Gate-controlled Diodes

- Square-shaped diode surrounded by a gate ring
- Used to characterize the Si-SiO₂ interface via parametrization of the surface current
- Apply constant reverse bias voltage (V_{diode}) to diode and measure current through the diode as a function of gate voltage

(Grove and Fitzgerald, 1966)

FIG. 20. Illustration of the effect of variation in the nature of the surface space-charge region on the reverse current of an n^+p diode, at a fixed reverse voltage.

- Current measured is superposition of:
 - I_{gen,MJ} = Bulk generation current under the diode (constant)
 - I_{gen,FIJ} = Bulk generation current under the gate
 - I_{gen,S} = Surface generation current under the gate
 - $\circ \quad I_{gen,S} = q \cdot n_i \cdot S_0 \cdot A_{gate}$
 - \circ S₀ = interface recombination velocity (cm/s). Depends on interface state density

TREDI2019

For the non-irradiated gate-controlled diodes, the surface current is too low to measure
 ✓ Good quality of the Si/SiO₂ interface

• $V_{FB} = -0.5$ V, in agreement with the measured with the MOS capacitors (slide 10)

After 10MRad gamma irradiation, V_{FB} shifts to ~-50V

FREDI2019

- Surface generation current does not depend on gate material or diode voltage (as expected)
- Interface recombination velocity (S₀) stable after 37.5MRad dose
- Unexpected S₀ value for 10MRad due to different annealing status (?)

Further tests: Measurement with equivalent device annealing

Conclusions

- Layout designs of microelectronic test structures for technology evaluation are presented
- Test structures capable to evaluate key parameters of strip sensor technology
- Results:

Monitor diodes

- Full depletion voltage (V_{FD}) and effective doping concentration (N_{eff}) decreased after high gamma irradiation
- Devices seem to be affected by **displacement damage** (probably) due to secondary electrons

Sensor edge tests

 Infineon edge sensor structure tested showing high breakdown voltage results (V_{BD} > 900 V), even for devices without guard ring

MOS and gate-controlled diodes

- Gate-controlled diodes showing low surface current for non-irradiated devices, hence, good quality of Si/SiO₂ interface
- Surface current independent of gate material
- Stable interface recombination velocity (S_0) after 37.5 MRad gamma irradiation