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MOTIVATION
A FIRST IMPORTANT FACT

The importance of speeding-up programs1:

“There’s Plenty of Room at the Top,” Leiserson, et. al., to appear

1
"A new Golden Age for Computer Architecture", J. Hennessy and D. Patterson in the 2018 ACM A.M. Turing

Award Lecture
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MOTIVATION
A FIRST IMPORTANT FACT

A rewriting the code in C from Python —a typical high-level, dynamically typed
language— increases performance 47-fold

Using parallel loops running on many cores yields a factor of approximately 7

Optimizing the memory layout to exploit caches yields a factor of 20
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MOTIVATION
A FIRST IMPORTANT FACT

A final factor of 9 comes from using the hardware extensions for doing single
instruction multiple data ( SIMD) parallelism operations that are able to perform
16 32-bit operations per instruction

⇒ the final highly optimized version runs more than 62,000x faster
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MOTIVATION
A SECOND IMPORTANT FACT

THE INTERNATIONAL EXASCALE CHALLENGE

Goal: Build a High-Performance Computer (Supercomputer) that achieves a
Peak Performance of 1 ExaFlops (1018 FLOPs) under the 20 MWatts envelope

Exascale computing will not just allow present solutions to run faster, but will
enable new solutions not affordable with today’s HPC technology

Exascale computing means real capability improvement in science and engineer-
ing

Exascale computing will enable breakthrough science

Two broad types of applications: simulations (modelling) and big data
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MOTIVATION
THE INTERNATIONAL EXASCALE CHALLENGE

taken from Yelick’s talks
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MOTIVATION
THE INTERNATIONAL EXASCALE CHALLENGE

WORLDWIDE EXASCALE ROADMAPS
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MOTIVATION
THE EUROPEAN EXASCALE APPROACH

THE EUROHPC JOINT UNDERTAKING

Development
In 2017 seven European countries signed the European declaration on
High-Performance Computing
In October 2018 the EU, together with 24 EU member states and Norway,
established the European High Performance Computing Joint Undertaking
(EuroHPC JU), a public-private partnership

Objectives
Its mission will be to develop, deploy, extend, and maintain in the EU an
integrated world-class supercomputing and data infrastructure capable of
at least 1018 calculations per second (so-called exascale computers)
The goal is to have a exascale supercomputer based on European tech-
nology in the global top 3 supercomputers by 2022
In addition, EuroHPC JU will develop and support a highly competitive and
innovative HPC ecosystem
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MOTIVATION
THE INTERNATIONAL EXASCALE CHALLENGE

THE EUROHPC JOINT UNDERTAKING

Challenges
Develop a European microprocessor and European exascale systems
Develop exascale software and applications
Widen use of HPC and address the HPC-related skills gap

The EuroHPC JU Ramp-Up Phase (2019–2020)
The EuroHPC JU will acquire and install two top-five pre-exascale ma-
chines and several mid-range supercomputers by 2020
The EuroHPC JU will invest e1.4 billion in the period 2019-2020

This is a European project of the size of Airbus in the 1990s and of Galileo in the 2000s
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MOTIVATION
THE INTERNATIONAL EXASCALE CHALLENGE

In addtion to build a physical exascale computer, there are also some ...

EXASCALE APPLICATION DEVELOPMENT CHALLENGES

Adopting new mathematical approaches

Algorithmic or model improvements

Porting to multicore and accelerator-based architectures

Exposing and optimizing additional parallelism

Leveraging optimized libraries
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MOTIVATION
THE THIRD IMPORTANT FACT

INTEL HIGH-END ARCHITECTURES

Portability: Run x86 code

General-purpose processors

Latency-oriented vs. throughput-oriented processors

Flexibility & Cheaper cost per unit
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MOTIVATION
THE THIRD IMPORTANT FACT

Intel high-end architectures @ The Top500 list

From the last list: November 2018
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MOTIVATION
THE GACOP RESEARCH GROUP

The research of our group has been always centered around the
topic of Supercomputing

MAIN RESEARCH LINES

1992 - 2002: Interconnection networks in HPC architectures

2000 - 2012: Parallel computer architecture: Multiprocessor on chip (CMPs)

2008 - until now: Code modernization: For GPUs and CMPs architectures

2015 - until now: HPC for Deep Neural Networks

MEMBER OF NOES

European Network of Excellence on "High Performance and Embedded Architec-
ture and Compilation" (HiPEAC)

European Network of Excellence on "Transnational Access Programme for a Pan-
European Network of HPC Research Infrastructures and Laboratories for scien-
tific computing" (HPC-EUROPE)

HyperTransport Technology Consortium

Spanish E-Science Network
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MOTIVATION
TALK OVERVIEW

The aim of this talk is to guide (in)experienced software developers to optimize
important applications for Intel high-end architectures

Identify potential problems and bottlenecks, solutions and trade-offs

Modernization code process: Best practices for a single node

Metrics: Performance (wall-clock time), speedup and parallel efficiency

Intel high-end architectures: Portability and broad range
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MOTIVATION
STRUCTURE OF THE TALK

Background
Parallelism: Technology trends and parallel programming
Intel high-end architectures (multicores & manycores)
Code modernization: Best practices

Practical examples
Stencil codes: Scientific apps that operate over an N-dimensional data
structure that changes over time, given a fixed computational pattern
Semantic Web: A Semantic dataset generator that transforms relational or
XML data into semantic repositories
Ant Colony Optimization (ACO): A Bio-inspired metaheuristic applied to a
wide range of NP-hard combinatorial optimization problems

Conclusions and Lessons learned

Future lines: Domain-Specific Languages (DSLs) and Domain-Specific Architec-
tures (DSAs)
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OUTLINE

1 BACKGROUND

2 CASE STUDY: 3-D STENCIL CODES

3 CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS

4 CASE STUDY: ACO

5 CONCLUSIONS AND FUTURE RESEARCH LINES
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BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

TECHNOLOGY EVOLUTION

from karlrupp.net
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BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

UNIPROCESSOR PERFORMANCE (SINGLE CORE)

Performance = highest SPECInt by year; from Hennessy & Patterson [2018]
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BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

FACTS

Transistor use (dark silicon) was affected by
Power wall
Memory wall

Clock speed was affected by
Power wall

Automatic instruction parallelism was affected by
ILP (Instruction-Level Parallelism) wall
Memory wall

Speculation & Out-of-order execution was affected by
Power wall
Memory wall
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BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

SOLUTIONS

Exploiting specialization: Accelerators

Exploiting data parallelism (SIMD): Using wider vector instructions

Exploiting thread parallelism (TLP): Using multi-cores

Hardware keeps evolving and Software must catch up!
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BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

A general multicore view

From Colfax HowTo Slides

Vector parallelism

Thread parallelism

Shared memory (L3 cache and RAM)

José M. García Code Modernization CERN - June 2019 19/124



Motivation Background Stencil Web ACO Conclusions & Future Parallel Intel_HPC_Arch Code_Mod.

BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

Exploiting data parallelism (SIMD): Using vector instructions

from Colfax HowTo slides

The wider the SIMD registers the better performance achieved using vectorization

José M. García Code Modernization CERN - June 2019 20/124



Motivation Background Stencil Web ACO Conclusions & Future Parallel Intel_HPC_Arch Code_Mod.

BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

Exploiting thread parallelism (TLP)

from Colfax HowTo slides

Threads are streams of instructions that share memory address space

The higher the core number the better performance achieved using thread
parallelization
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BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

We have used the OpenMP framework in this work

OPENMP MAIN FEATURES

OpenMP = “Open Multi-Processing” = computing-oriented framework for shared-
memory programming (https://www.openmp.org/)

This is de facto parallel programming standard

The current version is OpenMP 5.0 (Nov 2018)

OpenMP covers the entire hardware spectrum from embedded and accelerator
devices to high-end multicore systems with shared-memory

The core elements of OpenMP are the constructs (mainly pragmas) for thread
creation, workload distribution (work sharing), data-environment management,
thread synchronization, user-level runtime routines and environment variables.

Thread creation examples: #pragma omp parallel for and #pragma omp
task
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BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

Using Vectors: Two Approaches

from Colfax HowTo slides

Helping automatic vectorization

icc compiler pragmas: #pragma ivdep or #pragma vector

OpenMP has also pragmas for helping automatic vectorization (e.g. #pragma
omp simd)
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BACKGROUND
TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

PRINCIPLES OF PARALLEL COMPUTING

Granularity – how big should each parallel task be

Locality – moving data costs more than arithmetic

Load balance – don’t want 1K processors to wait for one slow one

Coordination and synchronization – sharing data safely

Performance modeling/debugging/tuning

Finding enough parallelism (Amdahl’s Law)

All of these things make parallel programming even harder than sequential pro-
gramming
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BACKGROUND
INTEL HIGH-PERFORMANCE ARCHITECTURES

Evolution of vector parallelism on Intel Architectures

Source: Intel Developer Zone
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BACKGROUND
INTEL HIGH-PERFORMANCE ARCHITECTURES

Evolution of thread parallelism on Intel high-end Architectures

Source: Intel Developer Zone
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BACKGROUND
INTEL HIGH-PERFORMANCE ARCHITECTURES

Xeon family

General-purpose: Suitable for
any workload

1-, 2-, 4-sockets: NUMA archi-
tecture

Highly parallel

Resource-rich

Forgiving performance: High
single-thread performance

Xeon Phi (1st Gen - Knights Corner or KNC)

Accelerator/coprocessor x86 based

61 in-order cores @ low frequency (1.2Ghz)

Low single-thread performance

High Memory Banwidth: 320 GB/sec

Custom operating system on board

Xeon Phi (2nd Gen - Knights Landing or KNL)

Improved single-thread performance (3x vs. KNC)

36 tiles interconnected by 2D mesh

Processor fully binary compatible with Xeon line
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BACKGROUND
INTEL HIGH-PERFORMANCE ARCHITECTURES

Intel Xeon Phi Knights Landing: Major novelties

KNL: ON-PACKAGE HIGH-BANDWIDTH MEMORY

16 GB of MCDRAM (Multi-channel, i.e., high bandwidth memory)

5x bandwidth vs. DDR4

5x power efficiency vs. DDR4

3 operating modes: Cache, Flat and Hybrid

KNL: CLUSTERING MODES

For applications sensitive to cache traffic (latency-bound)

Three different modes:
None: all-to-all
As an SMP architecture: quadrant/hemisphere
As a NUMA architecture: SNC-4/SNC-2
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BACKGROUND
OUR EVALUATION TEST BED

Evaluation environment: two Intel Xeon multicore and two Intel Xeon Phi manycore
(KNC and KNL)

Xeon v2 Xeon v4 Xeon Phi KNC Xeon Phi KNL
Microarchitecture Ivy-Bridge Broadwell MIC MIC
Sockets 2 2 1 1
Clock Frequency 2.6 GHz 2.2 GHz 1.238 GHz 1.4 GHz
Cores/socket 8 out-of-order 20 out-of-order 61 in-order 68 out-of-order
Threads/core 2 2 4 4
VPU Width 256 bits (AVX) 256 bits (AVX-2) 512 bits (AVX-512) 512 bits (AVX-512)
Peak Performance (SP) 665.6 GFLOPs 1408 GFLOPs 2020 GFLOPs 6092 GFLOPs

L1d-cache size/core 32 KB 32 KB 32 KB 32 KB
L2-cache size/core 256 KB 256 KB 512 KB 512 KB
L2-cache size (total) 4 MB 10 MB 30.5 MB 34 MB
L3-cache 20 MB 50 MB — —
DRAM size 32 GB 128 GB 16 GB 192 GB
Peak Memory Bandwidth 59.7 GB/s 76.8 GB/s 320 GB/s 76.8 GB/s

MCDRAM size — — — 16 GB
MCDRAM Bandwidth — — — 400 GB/s
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BACKGROUND
INTEL HIGH-PERFORMANCE ARCHITECTURES

INTEL TOOLS

Use Intel Parallel Studio to develop HPC code

⇒ icc & icpc compilers, vectorization & parallelization reports

Other useful Intel profiling tools
Use Intel VTune Amplifier to find hotspots
Use Intel Advisor to get hints on how to enhance vectorization
Use Intel Inspector to find and debug data races
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BACKGROUND
CODE MODERNIZATION

BRINGING CODES INTO THE PARALLEL AGE

Code modernization can mean many things, from using a modern language to
optimizing performance

Code modernization tries to extract the maximum performance from an applica-
tion and take full advantage of modern hardware

Just upgrading to new hardware does not always result in better application per-
formance. It may take modifications to the code to reap those performance gains

There is no “one recipe, one solution” technique

Much of Intel’s code modernization work comes out of its global network of Intel
Parallel Computing Centers
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BACKGROUND
CODE MODERNIZATION

OPTIMIZATION AREAS: NODE AND CLUSTER LEVEL
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BACKGROUND
CODE MODERNIZATION: BEST PRACTICES

SEQUENTIAL CODE

Competitive code in high-level languages (latest versions of C, C++, or Fortran)

Scalar Tuning: Strength reduction, precision control, and other compiler-friendly
practices

VECTORIZATION

Programmers have to facilitate the compiler’s task by rearranging the source
code

Unit-stride access: AoS (Array of Structures) to SoA (Structure of Arrays)
Data alignment
Container padding and eliminate peel loops
Eliminate multiversioning

Programmers have to facilitate the compiler’s task by adding some hints into the
source code
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BACKGROUND
CODE MODERNIZATION: BEST PRACTICES

THREAD PARALLELISM

From sequential to parallel: data-based or task-based parallelization
Exposing more parallelism: loop collapse and strip-mining
Minimizing load imbalanced: scheduling
Minimizing synchronization
Avoiding false sharing
Thread affinity
NUMA data locality

MEMORY LAYOUT

Exploit memory access: data locality, bandwidth memory tuning
Optimize data re-use in caches
Loop tiling: cache blocking and unroll-and-jam
Loop fusion: re-use data as soon as possible
Loop permutation: achieve unit-stride access
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OUTLINE

1 BACKGROUND

2 CASE STUDY: 3-D STENCIL CODES

3 CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS

4 CASE STUDY: ACO

5 CONCLUSIONS AND FUTURE RESEARCH LINES
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CASE STUDY: 3-D STENCIL CODES
PRESENTATION

THE PROBLEM

3-D Stencil codes are iterative kernels which updates data elements according to
some fixed predetermined pattern

3D stencil codes involve access to large volumes of data and suffer from poor
cache performance because data reuse is minimal

The goal is to evaluate the behaviour of these codes on Xeon Phi KNC, and
improve their execution time over a naïve parallel code running in Xeon v2

CODE MODERNIZATION FEATURES

Evaluate automatic vectorization (512-bit vector wide)

Analyze thread parallelism: tuning its parameters

Exploit memory locality: Cache blocking

Target platforms: Xeon v2 (16 cores, 2 threads/core), KNC (61 cores, 4 thread-
s/core), KNL (68 cores, 4 threads/core)
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CASE STUDY: 3-D STENCIL CODES
BACKGROUND

3-D STENCIL CODES

Partial differential equations ( PDEs) are the core of many problems

Usually solved by the finite-difference method, which gives an approximate solu-
tion in an iterative way

The solution is computed by updating each of the
input elements with correctly weighted values of
neighboring elements⇒ This computing pattern is
known as Stencil

Stencils depend on
The number of spatial dimensions (1-D, 2-D, 3-D, etc)
The number of neihgbours in each dimension (1, 2, 3, 4, ...)
The time order of the code: Element (Timet ) = F (Timet−1,Timet−2...)
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CASE STUDY: 3-D STENCIL CODES
BACKGROUND

Implemented as a time loop plus a triple nested loop along the entire data struc-
ture (3D)

Computations are applied until meeting either a convergence criteria or a certain
number of time steps

ALGORITHM: GENERIC 3-D STENCIL SOLVER KERNEL

1: for time = 0; time < TimeMax ; time + + do
2: for z = 1; z < depth − BorderSize; z + + do
3: for y = 1; y < height − BorderSize; y + + do
4: for x = 1; x < width − BorderSize; x + + do
5: stencil_solver_kernel();
6: end for
7: end for
8: end for
9: tmp = Input_Grid ; Input_Grid = Output_Grid ; Output_Grid = tmp;

10: end for

* width, height, depth are the dimensions of the data set including border (halo) points.
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CASE STUDY: 3-D STENCIL CODES
EVALUATION

EXPERIMENTAL METHODOLOGY

Three 3-D Stencil kernels have been evaluated
Acoustic diffusion code: 7 point spatial with 2nd order in time
Isotropic seismic wave propagation code: 25 point spatial with 2nd order
in time
Heat conduction code: 11 point spatial with 1st order in time

A limit of 1,000 time-steps was set for the simulations of the three Stencil kernels
(this sufficiently guaranteed the convergence of the problem).

As recommended, we performed 2 executions of the stencil prior to running the
1000 iterations as "warm-up"

Performance figures are given for double-precision numbers, and the execution
times shown are the average of 10 independent runs

Standard deviation is not shown, but was insignificant

Unless we specify other thing, evaluations on Xeon Phi KNC and KNL have been
carried out with balanced affinity parameter, and compact on Xeon v2 and v4.

The default scheduling policy is static.
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CASE STUDY: 3-D STENCIL CODES
EVALUATION

SPECIFICATIONS OF SOFTWARE TEST BED

The OS for all the platforms is Linux CentOS (different versions on each platform)

The KNC system also runs Intel MPSS 3.4.3

Codes are built using Intel’s icc compiler with the optimization level -O3

The option -mmic is set when compiling for Xeon Phi KNC.
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: STARTING POINT

BASE VERSION

A straightforward sequential implementation of the algorithm written in C/C++ for
each of the Stencil kernel codes

A naïve parallelization of these codes adding the (#pragma omp parallel
for) before the nested triple loop that traverses the data input

OPTIMIZED SCALAR VERSION

Applied scalar optimizations
Arithmetic operations strength reduction
Reorder of operations and data access
Use of the qualifier const
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF BASE+SCALAR VERSION

THREAD SCALABILITY IN XEON V2 AND XEON PHI KNC

Xeon Phi KNC (1st gen.) vs. Xeon v2
61 cores vs. 16 cores

Xeon v2
Threads

1 2 4 8 16 32
Acoustic 715 786 490 394 392 392
Seismic 2134 2494 1393 849 697 687
Heat 655 733 387 296 278 270

Xeon Phi
KNC

Threads
1 61 128 183 244

Acoustic 7181 137 137 220 298
Seismic 36620 683 577 621 640
Heat 7953 145 96 146 189

(time in secs.)

Scalability: Xeon v2 is limited to 16 threads and KNC to 128 threads

Memory accesses are limiting scalability

Poor benefit from using Xeon Phi KNC
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: VECTORIZATION (I)

Vectorization approach

We have followed the automatic vectorization because of portability issues

The vectorization report from the compiler showed that loops have not been vec-
torized

Therefore, we have rearranged the data layout and given some hints to ease the
vectorization process:

Data allocation:
We allocated all rows of the 3D arrays consecutively in memory (i.e., row
major order)
We mapped the unit stride dimension to the inner loop in nested loop
iterations as it produced a better use of cache lines
Then, the dataset was accessed in order of planes (layers), columns, and
finally rows from outer to inner level
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: VECTORIZATION (II)

Data alignment : All Data structures started with an address aligned to 64
We used _mm_malloc(Data, 64) instead of malloc()
Additionally, we gave hints to the compiler as __assume_aligned(Data,
64) or #pragma vector aligned

Align padding: We padded the inner dimension of multi-dimensional arrays to
guarantee alignment for each row of the matrix. The new width with padding was
calculated as width_PADD = ((((width∗sizeof (REAL))+63)/64)∗(64/sizeof (REAL)))

Data dependencies: Finally, we put #pragma ivdep (or #pragma omp simd)
before the loop for telling the compiler to ignore vector dependencies (which were
false) and avoid loop multiversioning
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF VECTORIZATION (I)

Xeon Phi KNC (1st gen.) vs. Xeon v2
61 cores (4 th/core) vs. 16 cores (2 th/core)
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SPEEDUP

RESULTS OBTAINED

The vectorized code on the KNC outperforms all kernels versions

KNC shows a performance improvement close to 7X against Xeon v2

Comparing with the baseline version running on KNC, around 4x.
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF VECTORIZATION (II)

Xeon Phi KNL (2nd gen.) vs. Xeon Phi KNC (1st gen.) vs. Xeon v2
64 cores (1 th/core) vs. 61 cores (4 th/core) vs. 16 cores (2 th/core)

RUNTIMES OF OUR Stencil CODES (seconds)

Version Acoustic Seismic Heat
Xeon v2 KNC KNL Xeon v2 KNC KNL Xeon v2 KNC KNL

Base 392 298 33 647 640 87* 270 189 30*
Vectorized 357 62 24 625 116 66 250 41 19

KNL in cache mode and (*) means 2 thread/core

RESULTS OBTAINED

The vectorization process in Xeon Phi is effective:
Speedup against their base versions: 4X for KNC and 1.4X for KNL
Speedup against Xeon v2: 7X for KNC and 13X for KNL

Memory system (in Xeon v2 and KNL) is the limiting factor (unable to provide
data at the desired rate)
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: THREAD PARALLELIZATION (collapse)

EXPOSING MORE PARALLELIZATION

Loop collapse can help to expose more parallelism

Adding the collapse (2) modifier to the OpenMP pragma that parallelizes the
loop

This modifier merges or fuses the two outermost loops of the evaluated kernels in
a same loop

This increases the number of work units that can be given to each thread

3-D STENCIL KERNEL PARALLELIZED USING COLLAPSE

1: for time = 0; time < TimeMax ; time + + do
2: #pragma omp parallel for collapse (2);

3: for z = 1; z < depth − BorderSize; z + + do
4: for y = 1; y < height − BorderSize; y + + do
5: for x = 1; x < width − BorderSize; x + + do
6: stencil_solver_kernel();
7: end for
8: end for
9: end for

10: tmp = Input_Grid ; Input_Grid = Output_Grid ; Output_Grid = tmp;
11: end for
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: THREAD PARALLELIZATION (scheduling)

Loop Scheduling & load balance

The scheduling policy: defines how the iterations of the loop are distributed
between the threads
Balanced load: divides the work between the threads in an equitable way
There are four types of scheduling available at compile time (static, dynamic,
guided and auto)
Added the schedule modifier to OpenMP pragma parallel (e.g., #pragma omp
parallel for schedule(type [,size])

from Colfax HowTo slides
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF THREAD PARALLELIZATION

Evaluation of Scheduling policies on KNC
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF THREAD PARALLELIZATION

Evaluation of Scheduling policies on KNC
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static is not as good as supposed

⇒ Some work imbalance among the different cores

guided improves by 5.51% when compared to static

The best performing policy was dynamic:
schedule(dynamic, 4)⇒ 34% acceleration for the acoustic
schedule(dynamic, 4)⇒ 42% for the seismic
schedule(dynamic, 2)⇒ 30% for the heat
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF THREAD PARALLELIZATION

Evaluation of Scheduling policies on KNL
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Cache mode with 64 threads

For KNL, the variability between configurations is minimal

dynamic was the best option for acoustic
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: THREAD PARALLELIZATION (affinity)

Affinity Policies

Bind logical threads to specific physical cores

3 types of affinity: compact, scatter and balanced

Setting affinity prevents thread migration

Set up with the environment variable KMP_AFFINITY
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF THREAD PARALLELIZATION

Evaluation of affinity policies on KNC
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Affinity has a little influence on the execution time
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF THREAD PARALLELIZATION

Evaluation of affinity policies on KNL
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Cache mode with 64 threads

For KNL, the compact parameter is the worst option for all cases
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: MEMORY OPTIMIZATION

Loop Tiling: Cache Blocking

Blocking is a transformation which groups loop iterations into subsets of size N
to improve data locality

The first step was to create tiles of sizes width_Tblock, height_Tblock and depth_Tblock
(for dimension X, Y and Z, respectively)

Then, three additional loops were created over the three existing loops to traverse
the dataset in the tiles of the selected sizes

from Colfax HowTo slides
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: MEMORY OPTIMIZATION

Blocking TECHNIQUE APPLIED TO THE 3-D Stencil SOLVER

1: for bz = 1; bz < depth − BorderSize; bz+ = depth_Tblock do

2: for by = 1; by < height − BorderSize; by+ = height_Tblock do

3: for bx = 1; bx < width − BorderSize; bx+ = width_Tblock do

4: for z = bz; z < MIN(bz + depth_Tblock, depth − BorderSize); z + + do
5: for y = by ; y < MIN(by + height_Tblock, height − BorderSize); y + + do
6: for x = bx ; x < MIN(bx + width_Tblock,width − BorderSize); x + + do
7: stencil_solver_kernel();
8: end for
9: end for

10: end for
11: end for
12: end for
13: end for
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF MEMORY OPTIMIZATION

Analyzing YZ blocking size - KNC
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Blocking on the Y and Z axes

Best block size: height_Tblock equals to 4, and depth_Tblock also equals to 4
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF MEMORY OPTIMIZATION

Analyzing X blocking size - KNC
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Blocking on the X axis

Setting the block size to 4 (Y axis) and 4 (Z axis)
Best block size: width_Tblock equals to 200
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: EVALUATION OF MEMORY OPTIMIZATION

Analyzing blocking size - KNL
Firstly, the best blocking configuration (200,4,4) was used varying the number of
threads
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KNL in Cache mode

Other block size configurations were analysed
Results show negative effects on both scalar and vector codes
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CASE STUDY: 3-D STENCIL CODES
CODE MODERNIZATION: SUMMARY

Xeon Phi KNL (2nd gen.) vs. Xeon Phi KNC (1st gen.) vs. Xeon v2
64 cores (1 th/core) vs. 61 cores (4 th/core) vs. 16 cores (2 th/core)

PERFORMANCE OF OUR Stencil CODES (GFLOPS)

Version Acoustic Seismic Heat
Xeon v2 KNC KNL Xeon v2 KNC KNL Xeon v2 KNC KNL

Base 8.7 10.4 81 7.6 8.4 81 10.2 20.1 129
+ Vectorized 8.8 51.2 112 7.6 49.1 108 10.3 84.5 204.3
+ Scheduling - 69.7 138 - 69.1 112 - 119.5 204.3
+ Affinity - 72.7 138 - 72.1 112 - 119.5 204.3
+ Blocking - 76.2 110 - 84.1 108 - 138.3 140.3

KNL in cache mode

Speedups (in execution time):
8-11X between KNC and Xeon v2 (parallel base version)
15-20X between KNL and Xeon v2 (parallel base version)

KNL obtains performance improvements between 1.5 to 1.7 to KNC

KNL: Stencil codes do not benefit from blocking

José M. García Code Modernization CERN - June 2019 59/124



Motivation Background Stencil Web ACO Conclusions & Future Founda. Vector Parallel Memory

CASE STUDY: 3-D STENCIL CODES
CONCLUSIONS

LESSONS LEARNED

Code portability: Stencil kernels have been programmed in C/C++ with OPENMP
extensions. Developers only need to re-compile the codes and they run in our Intel
multi- and many-core target platforms immediately (for KNC the compiler option
(-mmic)

The process of code modernization focuses on three areas: vectorization, par-
allelization and memory traffic reduction (bandwidth tuning)

Vectorization: Intel icc compiler and look at the vectorization report

Vectorization: data rearranged, data aligned and padding. Added the directive
#pragma ivdep

Parallelization: Added #pragma omp parallel for with the modifier
collapse (2) and schedule (dynamic)

Parallelization: Affinity balanced (KNC) and scatter (KNL)

Exploiting blocking in the X, Y, Z axes also leads to additional performance gains
for all kernels in KNC, but no in KNL (cache mode)

Speedups (in execution time):
Xeon Phi KNC obtains up to 11X over Xeon v2
Xeon Phi KNL (cache mode) obtains up to 20X over Xeon v2
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CASE STUDY: 3-D STENCIL CODES
PAPERS PUBLISHED
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tectures”. Computers & Electrical Engineering (ISSN: 0045-7906), Vol.: 46, pp.
190-201, 2015. Elsevier.

Juan M. Cebrián, José M. Cecilia, Mario Hernández and José M. García. “Code
Modernization Strategies to 3-D Stencil-based applications on Intel Xeon Phi:
KNC and KNL”. Computers and Mathematics with Applications (ISSN: 0898-
1221), Vol.: 74, pp. 2557-2571, 2017. Elsevier B.V.
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SPEEDING UP SCIENTIFIC CODES IN HPC ARCH.
TOMORROW TALK CONTENTS

Background
Parallelism: Technology trends and parallel programming
Intel high-end architectures (multicores & manycores)
Code modernization: Best practices

Practical examples
Stencil codes: Scientific apps that operate over an N-dimensional data
structure that changes over time, given a fixed computational pattern
Semantic Web: A Semantic dataset generator that transforms relational or
XML data into semantic repositories
Ant Colony Optimization (ACO): A Bio-inspired metaheuristic applied to a
wide range of NP-hard combinatorial optimization problems

Conclusions and Lessons learned

Future lines: Domain-Specific Languages (DSLs) and Domain-Specific Architec-
tures (DSAs)
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Intel high-end architectures (multicores & manycores)
Code modernization: Best practices
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Stencil codes: Scientific apps that operate over an N-dimensional data
structure that changes over time, given a fixed computational pattern
Semantic Web: A Semantic dataset generator that transforms relational or
XML data into semantic repositories
Ant Colony Optimization (ACO): A Bio-inspired metaheuristic applied to a
wide range of NP-hard combinatorial optimization problems
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BACKGROUND
SUMMARY

TECHNOLOGY TRENDS & PARALLEL PROGRAMMING

Processor architecture is composed of multiple cores
Exploits data parallelism (SIMD) using vector instructions
Exploits thread parallelism (TLP) among cores

Parallel issues (i.e., memory locality, granularity, coordination and synchroniza-
tion, etc) make parallel programming even harder than sequential programming

INTEL HIGH-PERFORMANCE ARCHITECTURES

Intel Xeon multicore: High single-thread performance, AVX-2 instruct. (256 bits
vector unit wide), few cores/socket (8 to 20)

Intel Xeon Phi: Low single-thread performance, AVX-512 instruct. (512-bits
vector unit wide), many cores/socket (61 to 68)

Intel profiling tools

CODE MODERNIZATION: BEST PRACTICES

Take full advantage of modern hardware: manual approach

Single node: Scalar, vectorization, parallelization and memory tuning
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OUTLINE

1 BACKGROUND

2 CASE STUDY: 3-D STENCIL CODES

3 CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS

4 CASE STUDY: ACO

5 CONCLUSIONS AND FUTURE RESEARCH LINES
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
PRESENTATION

THE PROBLEM

SWIT (Semantic Web Integration Tool) was a tool developed by the TECNOMOD
research group (from the University of Murcia)

SWIT transforms relational or XML data into repositories in Semantic Web formats
(RDF or OWL)

This tool was developed in the frame of The Quest for Orthologs

Written in Java, it required more than a month of computational hours to transform
certain databases

The goal was to improve the execution time of SWIT

CODE MODERNIZATION FEATURES

A case of moving from interpreted to compiled language

A task-based parallelization example

Also I/O bounded application

Target platform: Xeon v4 (40 cores, 2 threads/core)
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
FOUNDATIONS

THE QUEST FOR ORTHOLOGS CONSORTIUM

The Quest for Orthologs (QfO) is a joint effort to improve and standardize orthol-
ogy predictions through collaboration and the use of shared reference datasets

‘Orthology’ is the identification of gene relationships: Any of two or more homolo-
gous gene sequences found in different species related by linear descent

More than 40 different databases in XML format

Semantic web techniques are used to data normalization and integration
They offer a natural space for data integration and interoperability
Ontologies are the cornerstone technology: the OWL language
Linked Open Data is a Semantic Web initiative for publishing and sharing
the web content in a semantic format like RDF
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
FOUNDATIONS

SWIT (Semantic Web Integration Tool)
SWIT provides semantics-rich, ontology-driven transformation and integration of
datasets (http://sele.inf.um.es/swit/)

The major performance limitation is the application of identity rules in data inte-
gration scenarios (for large datasets)

SWIT architecture
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
FOUNDATIONS

An input example (XML/relational database)

<species name=" Escher ich ia−co l i " NCBITaxId=" 83333 ">
<genes>
<gene i d =" 1 " p r o t I d = " P07118 " geneId=" valS " / >
< / genes>
< / species>
<species name=" Nematocida−par is i i " NCBITaxId=" 881290 ">
<genes>
<gene i d =" 2 " p r o t I d = " I3EQN8" geneId="NEPG_00863" / >
< / genes>
< / species>
<groups>
<orthologGroup i d =" 1 ">
<geneRef i d = " 1 " / >
<geneRef i d = " 2 " / >
< / orthologGroup>
< / groups>

An output example (RDF/OWL dataset)

< r d f : Desc r i p t i on r d f : about= " h t t p : / / i d e n t i f i e r s . org / gene /83333/ valS ">
<dct : i d e n t i f i e r r d f : datatype=" h t t p : / / www.w3 . org /2001/XMLSchema# s t r i n g ">valS< / dc t :

i d e n t i f i e r >
<obo : taxonomy r d f : resource=" h t t p : / / i d e n t i f i e r s . org / taxonomy/83333 " / >
<s io : synthes ize r d f : resource=" h t t p : / / p u r l . org / net / o r t h # p r o t e i n / sIO_000750_0 / P07118 " / >
< r d f : type r d f : resource=" h t t p : / / p u r l . org / net / o r t h #Gene" / >
< / r d f : Desc r i p t i on >
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
FOUNDATIONS

INPUT INSTANCES: ORTHOLOGY DATA

3 orthology databases have been used from https://questfororthologs.
org/orthology_databases

Inparanoida: This resource stores orthology relations between genes from dif-
ferent species. We have used the InParanoid files for the species S.pombe,
C.elegans and G.gorilla, whose sizes are 49 MB, 318 MB and 371 MB. These
three data collections include 50, 233 and 174 files respectively.

TreeFamb: This resource stores groups of orthologs for several genomes. We
have used the whole database, which is distributed in one 612 MB file.

OMAc: This resource also stores groups of orthologs for several genomes. We
have used the whole database, which is distributed in one 1.5 GB file.

a
http://inparanoid.sbc.su.se/download/8.0_current/Orthologs_OrthoXML/

b
http://www.treefam.org/download

c
https://omabrowser.org/oma/current/
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
FOUNDATIONS

OUTPUT DATA GENERATED (RDF TRIPLES)

Dataset Input and output instances Triples generated

InParanoid - S.pombe 326,379 829,152
InParanoid - C.elegans 2,155,382 5,385,137
InParanoid - G.gorilla 2,511,846 6,144,129
InParanoid - Whole DB 295,885,160 440,025,733
OMA 16,641,865 52,068,297
TreeFam 2,720,491 14,803,371

The transformation of the 43 GB of the InParanoid database with identity rules
required of 919 computational hours (around 38 days)!!!
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: REDESIGNING SWIT

HPC-SWIT BASICS

The HPC-SWIT version has been fully reimplemented from scratch in C/C++

Additionally, the #pragma omp simd was added in some loops to avoid an in-
correct data dependence or a multi-versioned chunk of code

IDENTITY RULES

The original version used SPARQL queries to detect redundant data, which is not
efficient for large datasets or for identity rules with many conditions

HPC-SWIT uses two new data structures: hash maps of vectors

A hash map for AND conditions and another one for OR conditions

The new method generates nearly unique hashes per each individual (depending
on the type of rule)
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: REDESIGNING SWIT

Xeon v4
Using a single core (and one thread)

SWIT EXECUTION COMPARISON USING 3 DATASETS OF INPARANOID DATABASE

Original V. W.I and HPC V. W.I stands for the original version and optimized version of SWIT with identity rules,
whilst Original V. and HPC V. N.I denotes the usage of these versions when no identity rules are applied
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: REDESIGNING SWIT

Xeon v4
Using a single core (and one thread)

SWIT EXECUTION COMPARISON USING 3 DATASETS OF INPARANOID DATABASE

A speedup between 3 and 4.5 is obtained without identity rules

A speedup between 209 and 671 is obtained while using identity rules
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: REDESIGNING SWIT

Xeon v4
Using a single core (and one thread)

SINGLE CORE EXECUTION W/ IDENTITY RULES
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: REDESIGNING SWIT

SINGLE CORE EXECUTION W/ IDENTITY RULES: SPEED-UP TABLE

Dataset HPC-SWIT vs SWIT Speed up
InParanoid S.pombe 209x
InParanoid C.elegans 396x
InParanoid G.gorilla 671x

InParanoid WB 240x
OMA 1, 395x

TreeFam 12, 606x
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: PARALLELIZATION

TASK PARALLELIZATION

Some databases (e.g. InParanoid) have many input files

Our parallelization strategy consisted in setting one input file and one HPC-SWIT
instance per core⇒ task parallelization

The parallelization is applied at process level by using the GNU Parallel tool

The following script shell is run:

[user@ibsen ~]$ files = ( $( find $dir -maxdepth 1 -type f) )
[user@ibsen ~] parallel ./ swit {} " arguments " ::: ${ files [@]}
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: PARALLELIZATION

Xeon v4
40 cores (2 th/core)

EXECUTION TIME COMPARISON FROM ORIGINAL SWIT VS PARALLEL HPC-SWIT

An additional improvement factor of 4 was achieved

The original SWIT algorithm required 38 days to process the whole InParanoid
database (43 GB). Parallel HPC-SWIT in less than 1 hour (≈ 55 minutes)
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: PARALLELIZATION

PARALLEL HPC-SWIT VS SWIT SPEED UP

Database Dataset Sequential speed up Parallel speed up
InParanoid S.pombe 209x 1, 964x

C.elegans 397x 6, 196x
G.gorilla 672x 11, 187x
Whole database 240x 1, 003x

OMA 1, 395x 318x
TreeFam 12, 606x 6, 581x

REMARKS

We split OMA and TreeFam into several files. However, their parallel speed up is
lower due to problems with the structure of OrthoXML formata

a
Each OrthoXML file contains one node per species, which contains its respective list of genes. Splitting an

OrthoXML file requires to replicate this information increasing the data size to process
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: DISK USAGE

HPC-SWIT: I/O USAGE (%) FOR INPARANOID DATABASE
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32.17%
36.42%

44.33%

56.27%
60.05%

80.64%
88.11%

HARD DRIVE DISK BOTTLENECK

This is due to write large files in a short period of time

Solution: Compress the data before sending it to disk. The compression method
used is the “Deflate” function applied in ZIP files (Huffman coding y LZ77)
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: DISK USAGE

COMPRESSION METHOD

DEFLATE algorithm, standard zip

A compression ratio of ≈ 27x for RDF/OWL files

HPC-SWIT: I/O EXECUTION TIME FOR INPARANOID DATABASE

Version Compression Time (hrs) Speed up
Original No 919 (≈ 38 days) Not applicable

HPC-SWIT No 0.91 (≈ 55 m) 1, 003x
HPC-SWIT Yes 0.14 (≈ 8 m 56 s) 6, 173x
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: DISK USAGE

Xeon v4
40 cores (2 th/core)

HPC-SWIT EXECUTION TIMES VARYING THE THREAD COUNT, W/ OR W/O COMPRESSION
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CODE MODERNIZATION: DISK USAGE

HPC-SWIT EXECUTION TIMES VARYING THE THREAD COUNT, W/ OR W/O COMPRESSION

COMPRESSION TRADE OFFS

Compression might be adding up an excessive overhead with reduced number
of threads

Its effectiveness depends on the size of the input/output dataset, number of files,
and disk technology (HDD, SSD, etc.)
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
CONCLUSIONS

LESSONS LEARNED

HPC-SWIT (https://bitbucket.org/Neobernad/swit-test) has been
written in C++ enabling vector capabilities with pragmas. The checking of identity
rules was implemented using hash maps of vectors both for AND and OR condi-
tions

In a single core, HPC-SWIT run faster than SWIT for both with and without check-
ing identity rules

A parallel implementation was developed for databases with many input files

We followed the task parallelization strategy that consisted in setting one input
file and one HPC-SWIT instance per core, doubling the performance benefits

We realized that accesses to HDD were the bottleneck. We implemented out-
put data compression obtained additional performance benefits depending on the
dataset size and the technology used for storage

Speedups with identity rules on the Xeon v4 (in execution time):
InParanoid database: 240X (single core), 1,000X (parallel, 80 th), 6,200
(parallel, 80 th & I/O compression ratio of 27X)
OMA database: 1, 395X (single core), worse in parallel
TreeFam database: 12, 606X (single core), worse in parallel
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CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
PAPERS PUBLISHED

José Antonio Bernabé-Díaz, María del Carmen Legaz-García, José M. García
and Jesualdo Tomás Fernández-Breis. “Application of High Performance Com-
puting Techniques to the Semantic Data Transformation”. In Trends and Advances
in Information Systems and Technologies, Naples (Italy). pp. 691–700, 2018.
Springer International Publishing. ISBN: 978-3-319-77703-0.

José Antonio Bernabé-Díaz, María del Carmen Legaz-García, José M. García
and Jesualdo Tomás Fernández-Breis. “Efficient, semantics-rich transformation
and integration of large datasets”. Expert Systems With Applications (ISSN: 0957-
4174). Volume 133, 1 November 2019, Pages 198-214.
doi: https://doi.org/10.1016/j.eswa.2019.05.010
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OUTLINE

1 BACKGROUND
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3 CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS
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CASE STUDY: ACO
PRESENTATION

THE PROBLEM

The Ant Colony Optimization (ACO) is a bio-inspired metaheuristic applied suc-
cessfully to a wide range of NP-hard combinatorial optimization problems

Many real-world problems can be reduced to them, e.g., route scheduling, goods
dispatching, etc.

First proposed by Marco Dorigo in 1992 and based on ants’ foraging process

Requires a lot of computations ( compute-bound problem)

The goal is improving the ACO’s execution time and testing its scalability (parallel
efficiency) in high-end Intel architectures

CODE MODERNIZATION FEATURES

The base code is based on the sequential Stützle’s implementation in C++

Best practices: scalar, parallelization, vectorization, and memory

Evaluation of parallel efficiency (or scalability)

Target platforms: Xeon v2 (16 cores, 2 threads/core), Xeon v4 (40 cores, 2 thread-
s/core), KNC (61 cores, 4 threads/core) and KNL (68 cores, 4 threads/core)
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CASE STUDY: ACO
BACKGROUND

GENERAL STRUCTURE OF ACO ALGORITHMS

1: Initialization()
2: while not TerminationCondition() do
3: TourConstruction()
4: PheromoneUpdate()
5: end while
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CASE STUDY: ACO
BACKGROUND

ACO APPLIED TO THE TRAVELLING SALESMAN PROBLEM (TSP)
Consists of finding the shortest round trip tour that include at least once each
city from a set of n cities

The TSP is a paradigmatic NP-hard combinatorial optimization problem

The symmetric TSP has been used, in which the distance between two cities, i
and j, is the same in both directions (dij = dji )

The tour construction stage takes over 99.8% of the time

THE ACO TOUR CONSTRUCTION STAGE

1: for a = 1 to m do
2: {Place ant on initial city}
3: initial_city ← choose_initial_city()
4: tour [a][1]← initial_city
5: visited [a][initial_city ]← true
6: {Construct tour}
7: for step = 2 to n do
8: choose_next(a, step)
9: end for

10: tour [a][n]← tour [a][1]
11: tour_length[a]← compute_tour_length(tour [a])
12: end for
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CASE STUDY: ACO
BACKGROUND

ANT SYSTEM VARIANT

In Ant System, at the start of the tour
construction stage, each ant is placed
on a randomly chosen initial city

At each construction step, each ant
makes use of a probabilistic action
choice rule, called random propor-
tional rule, in order to choose its next
city to visit

τij is the amount of pheromone as-
sociated with edge (i, j), ηij = 1/dij
is a distance value computed a pri-
ori, α and β are two parameters (fixed
at the beginning of an execution), and
Nk

i is the non-tabu list

B

A

D

Cpk
ij
=

[τ ij ]
α⋅[ηij]

β

∑
l∈Ni

k

[τ ij]
α⋅[ηij ]

β

Not visited

Visited

0.15

0.7

0
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CASE STUDY: ACO
BACKGROUND

ROULETTE WHEEL SELECTION

Input: Ant identifier (a), construction step (phase).
1: current_city ← tour [a][phase − 1]
2: {Selection Probabilities Computation}
3: prob_sum ← 0
4: for i = 1 to n do
5: if visited [a][i] then
6: prob[i]← 0
7: else
8: prob[i]← choice_info[current_city ][i]
9: prob_sum ← prob_sum + prob[i]

10: end if
11: end for
12: {City Selection}
13: r ← random(0..prob_sum)

14: city ← 1
15: partial_sum ← prob[city ]
16: while partial_sum < r do
17: city ← city + 1
18: partial_sum ← partial_sum + prob[city ]
19: end while
20: tour [a][phase]← city
21: visited [a][city ]← true

ROULETTE WHEEL SELECTION (DEFAULT)

Each not visited city is assigned to a
portion (proportionally to its probabil-
ity) on a circular roulette wheel

A random number is generated,
and the portion in which the number
takes place determines the selected
city

Roulette Wheel
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CASE STUDY: ACO
EVALUATION

EXPERIMENTAL METHODOLOGY

Our different implementations are tested using a set of instances from the TSPLIB
benchmark library
ACO parameter settings: m = n (where m is the number of ants and n is the
number of cities), α = 1 and β = 5.

Performance figures are given for single-precision numbers, and the execution
times shown are the average of 10 independent runs

Xeon Phi KNC and KNL have been set to balanced affinity, and Xeon v2 and v4
to compact affinity

On Xeon Phi KNL, the experiments are performed on flat mode (both DDR4 and
MCDRAM)
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CASE STUDY: ACO
CODE MODERNIZATION: SCALAR OPTIMIZATIONS

SCALAR OPTIMIZATIONS

Avoid repetitive computations using previously calculated results. [ηij ]
β is pre-

computed at the beginning of the program and stored in a matrix

Use the right precision for built-in functions (e.g., replace pow() with powf())

Avoid runtime auto-promotion and type conversions

Replace costly arithmetic expressions with others of lower cost (e.g., replace di-
visions with multiplications by the inverse)

Especially useful in our low single-thread performance architectures (e.g. KNC)
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CASE STUDY: ACO
CODE MODERNIZATION: THREAD PARALLELIZATION

PARALLELIZATION STRATEGY

The tour construction stage is inherently parallel, as each ant can construct its
solution individually

Map ants to threads (parallelizing the outer loop with OpenMP)

Handle data structures

TOUR CONSTRUCTION

1: #pragma omp parallel for

2: for a = 1 to m do
3: choose_initial_city(a)
4: for step = 2 to n do

5: choose_next_city(a, step, thread_id) → Selection function (99% of the time)

6: end for
7: compute_tour_length(a)
8: end for
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CASE STUDY: ACO
CODE MODERNIZATION: THREAD PARALLELIZATION

Xeon Phi KNC (1st gen.) vs. Xeon v2
61 cores (4 th/core) vs. 16 cores (2 th/core)

Xeon Phi Xeon v2

Parallel efficiency (or scalability) for tour construction
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CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

APPLYING BEST PRACTICES

Data alignment : We have used _mm_malloc(size, 64) instead of malloc() for data
alignment

Align padding: We have padded the inner dimension of multi-dimensional arrays
to guarantee alignment for each row of the matrix.

Data alignment hints: Concretely, we have used __assume_aligned(ptr,
64) for pointers. This clues are provided in the region of the code where data
structures are used within a loop.
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CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

Vectorization report for the main loops of Roulette Wheel Selection

PROBLEMS APPEARED

Looking at the vectorization report from the Intel compiler, we noticed that none
of the two loops in the Roulette Wheel Selection were vectorized

Report from : Loop nest , Vector & Auto−p a r a l l e l i z a t i o n o p t i m i z a t i o n s [ loop ,
vec , par ]

LOOP BEGIN at ants . i nc (237 ,5)
remark #15344: loop was not vec to r i zed : vec to r dependence prevents

v e c t o r i z a t i o n
remark #15346: vec to r dependence : assumed FLOW dependence between prob

(239:13) and cho ice_ in fo (241:13)
remark #15346: vec to r dependence : assumed ANTI dependence between cho ice_ in fo

(241:13) and prob (239:13)
remark #25439: un ro l l ed wi th remainder by 2
LOOP END

LOOP BEGIN at ants . i nc (252 ,9)
remark #15523: loop was not vec to r i zed : loop c o n t r o l v a r i a b l e c i t y was found ,

but loop i t e r a t i o n count cannot be computed before execut ing the loop
LOOP END
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CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

ROULETTE WHEEL SELECTION

Input: Ant identifier (a), construction step (phase).
1: current_city ← tour [a][phase − 1]
2: {Selection Probabilities Computation}
3: prob_sum ← 0

4: for i = 1 to n do
5: if visited [a][i] then
6: prob[i]← 0 → Not vectorized, but solvable
7: else
8: prob[i]← choice_info[current_city ][i]
9: prob_sum ← prob_sum + prob[i]

10: end if
11: end for

12: {City Selection}
13: r ← random(0..prob_sum)

14: city ← 1
15: partial_sum ← prob[city ]

16: while partial_sum < r do
17: city ← city + 1 → Inherently sequential
18: partial_sum ← partial_sum + prob[city ]

19: end while

20: tour [a][phase]← city
21: visited [a][city ]← true
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CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

PROBLEMS APPEARED

First loop: computes the probability of selection for each city ⇒ Vector depen-
dence and if statement

Second loop: simulates the roulette spinning ⇒ the number of iterations is not
known at compilation time, and each iteration depends on the previous one
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CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

ALTERNATIVE SELECTION FUNCTION: V-ROULETTE

Use #pragma ivdep to ignore vector dependences

Add a tabu list and replace the if sentence for a multiplication

⇒ first loop vectorized

    r ← random(0..prob_sum)
    city ← 1
    partial_sum ← prob[city]
    while partial_sum < r do
        city ← city + 1
        partial_sum ← partial_sum + prob[city]
    end while
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CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

ALTERNATIVE SELECTION FUNCTION: I-ROULETTE (INDEPENDENT ROULETTE) V1

Use a different random number for each city ( independent)

Change data structures: the seed for generating random numbers needs to be
replicated to a matrix of seeds

The city with the highest weight is selected as the next one

⇒ second loop partly vectorized

 city ← argmax(weights)
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CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

ALTERNATIVE I-ROULETTE V2: VECTORIZED REDUCTION

Use pragma #pragma ivdep to ignore vector dependences and avoid loop mul-
tiversioning

Automatic reduction vectorization from Intel icc compiler version 16

SELECTION FUNCTION: I-ROULETTE V2

Input: Ant identifier (a), construction step (step), thread identifier (thread_id).
Output: Selected city.

1: current_city = tour [a][step − 1]
2: city ← −1
3: max_weight ← −1

#pragma ivdep

4: for i = 1 to n do
5: w ←

choice_info[current_city ][i] ∗ visited [a][i] ∗ rand01(seeds[thread_id ][i])
6: if w > max_weigth then
7: city ← i
8: max_weight ← w
9: end if

10: end for
11: return city

VECTORIZATION REPORT
(INTEL COMPILER)

Loop (lines 4-10):

Vectorized

Unit stride

Vector length = ar-
chitecture’s vector
length
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CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

ALTERNATIVE SELECTION FUNCTION: DS-ROULETTE

Cities are grouped into blocks and each block’s probability is computed as the
addition of the probabilities of the cities within that block

Two roulette wheel selections take place: one for choosing a block, and a second
for choosing a city within that block

Roulette Wheel

Roulette Wheel

0.7 1 0.7

x =
0.1 0 0

0.15 1 0.15

0.25 0 0

2

3

1

BS

. 
. 

.

ProbabilitiesTabu listChoice info

1) Selection Probabilities Computation (vectorization within each block)

3) City Selection
(serial)

. 
. 

.
Block 1

∑

. 
. 

.

. 
. 

.

0.1 1 0.1

x =
0.6 1 0.6

0.36 0 0

0.05 0 0

2

3

1

BS

. 
. 

.

ProbabilitiesTabu listChoice info
. 

. 
.

Block 2

∑
. 

. 
.

. 
. 

.

0.3 0 0

x =
0.05 1 0.05

0.25 1 0.25

0.1 1 0.1

2

3

1

. 
. 

.

ProbabilitiesTabu listChoice info

Block N

∑

. 
. 

.

. 
. 

.

. 
. 

.

BS

...

2) Block Selection
(serial)

0.2

0

0.35

0.1

2

3

1

Probabilities

Block i

. 
. 

.

BS

. 
. 

.

i = wining block

José M. García Code Modernization CERN - June 2019 102/124



Motivation Background Stencil Web ACO Conclusions & Future Foundations Parallel Vector Efficiency

CASE STUDY: ACO
CODE MODERNIZATION: VECTORIZATION

Xeon Phi KNC (1st gen.)
61 cores (4 th/core)

SELECTION FUNCTIONS ON XEON PHI KNC

Speed up for the tour construction stage with different selection functions (compared to
Roulette Wheel
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CASE STUDY: ACO
CODE MODERNIZATION: WALL-CLOCK TIME EVALUATION

Xeon Phi KNC (1st gen.) vs. Xeon v2
61 cores (4 th/core) vs. single core (1 th/core)

SPEED UP FOR THE TOUR CONSTRUCTION STAGE

Execution time on Xeon Phi KNC compared to sequential code on Xeon v2
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CASE STUDY: ACO
CODE MODERNIZATION: WALL-CLOCK TIME EVALUATION

Xeon Phi KNL (2nd gen.) vs. Xeon Phi KNC (1st gen.) vs. Xeon v4 vs. Xeon v2
64 cores (3 th/core) / 61 cores (4 th/core) / 40 cores (2 th/core) / 16 cores (2 th/core)
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Execution time (s) for tour construction on different architectures
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CASE STUDY: ACO
CODE MODERNIZATION: WALL-CLOCK TIME EVALUATION

Xeon Phi KNL (2nd gen.) vs. Xeon Phi KNC (1st gen.) vs. Xeon v4 vs. Xeon v2
64 cores (3 th/core) / 61 cores (4 th/core) / 40 cores (2 th/core) / 16 cores (2 th/core)
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Intel Xeon v4 outperforms the other architectures when it runs instances of up
to 3795 cities (speedup of 10X over Xeon v2)

KNC and KNL outperform Xeon v4 for larger instances

Speedups for KNC up to 6X and for KNL(MCDRAM) up to 9X

For the largest instance Xeon v4 is slightly better than the two Xeon Phi
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CASE STUDY: ACO
CODE MODERNIZATION: THREAD PARALLELIZATION

Parallel Efficiency on Xeon multicore

Xeon v2(16 cores, 2 threads/core)
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Xeon v4(40 cores, 2 threads/core)
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Xeon v2 obtains good parallel efficiency for small and medium-sized problem in-
stances (around 80%), but it decreases for larger problem sizes (around 40%)

Xeon v4 shows worse scalability, ranging from 62% to only 20% for large problem
sizes
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CASE STUDY: ACO
CODE MODERNIZATION: THREAD PARALLELIZATION

Parallel Efficiency on Xeon Phi KNL
Xeon Phi KNL - MCDRAM(68 cores, 3 threads/core)

5 10 15 20 25 30 35 40 45 50 55 60 65

10

20

30

40

50

60

Cores

Sp
ee

du
p

Limit
rat783
pr1002
rl1889
pr2392
fl3795
rl5934

pla7397

3

Xeon Phi KNL - DDR4(68 cores, 3 threads/core)
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Xeon Phi KNL with MCDRAM memory achieves a parallel efficiency ratio from
31% to 20%

Xeon Phi KNL with DDR4 memory achieves a parallel efficiency ratio from 30%
to 8%
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CASE STUDY: ACO
CODE MODERNIZATION: THREAD PARALLELIZATION

Parallel Efficiency on Xeon Phi KNC
Xeon Phi KNC(61 cores, 4 threads/core)
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Xeon Phi KNC achieves the best parallel efficiency, ranging from near 100% for
small problems to 70% for larger problem sizes, although it drops to 33% for the
largest size
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CASE STUDY: ACO
CODE MODERNIZATION: THREAD PARALLELIZATION

PARALLEL EFFICIENCY: FEASIBLE EXPLANATIONS
1 Core load unbalance: Limited impact (depending of number of cores and

problem size)
2 Memory bandwidth limitations: The key factor
3 NUMA effects on data placement: Not for KNC
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CASE STUDY: ACO
CODE MODERNIZATION: THREAD PARALLELIZATION

Memory bandwidth analysis with Vtune

ACO is asking for the highest memory bandwidth in all the execution time
For large size problems, ACO changes its behaviour: from compute bounded to
memory bounded
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CASE STUDY: ACO
CODE MODERNIZATION: THREAD PARALLELIZATION

Recent proposal: Using a K-nearest neighbor list

K-nearest neighbor criteria: neighbors ordered by choice_info values
We tested several values for K
Always multiples of 8⇒ Final value: groups of 32 neighbours
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CASE STUDY: ACO
ON-GOING WORK: K-NEAREST NEIGHBOR LIST

Xeon Phi KNL (2nd gen.) vs. Xeon Phi KNC (1st gen.) vs. Xeon v4 vs. Xeon v2
64 cores (3 th/core) / 61 cores (4 th/core) / 40 cores (2 th/core) / 16 cores (2 th/core)
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Execution time (s) for tour construction on different architectures

A huge reduction time: KNC around 10X and the rest over 100X

As memory bandwidth problems were solved:
Xeon v4 was again the best architecture
KNL’s execution time is the same with DDR4 and MCDRAM
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CASE STUDY: ACO
ON-GOING WORK: K-NEAREST NEIGHBOR LIST

Quality of Solution
Independent of the target platform

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000
6.2

6.4

6.6

6.8

7

7.2

Iteration

Le
ng

th
To

ur
(x

10
5

km
) original

neighbours

Quality of solution measured as tour length for 1000 iterations

José M. García Code Modernization CERN - June 2019 113/124



Motivation Background Stencil Web ACO Conclusions & Future Foundations Parallel Vector Efficiency

CASE STUDY: ACO
CONCLUSIONS

LESSONS LEARNED

The Ant Colony Optimization (ACO) metaheuristic code applied to the Travelling
Salesman Problem has been modernized

Code modernization best practices applied: scalar, parallelization, vectorization,
and memory

Vectorization: Intel icc compiler and look at the vectorization report. Problems
when vectorizing Roulette Wheel ⇒ Solved by other selection algorithm (I-
Roulette v2)

Parallelization: Added #pragma omp parallel for

Poor parallel efficiency for large problem sizes⇒ Three main problems identified:
Core load unbalance, Memory bandwidth limitations and NUMA effects on data
placement

Analysis with VTune: ACO changes to a memory-bound algorithm

Speedups (in execution time):
Against sequential base version running on Xeon v2: Xeon v4 up to 90X,
KNC up to 80X, and KNL(MCDRAM) up to 100X
Against parallel version running on Xeon v2: Xeon v4 up to 10X, KNC up
to 6X, and KNL(MCDRAM) up to 9X
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CASE STUDY: ACO
PAPERS PUBLISHED

José M. Cecilia, José M. García, Andy Nisbet, Martyn Amos and Manuel Ujaldón.
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Parallel and Distributed Computing (ISSN: 0743-7315), Vol.: 73, pp. 42-51, 2013.
Elsevier.

Antonio Llanes, José M. Cecilia, Antonia Sánchez, José M. García, Martyn Amos
and Manuel Ujaldón. “Dynamic load balancing on heterogeneous clusters for
parallel ant colony optimization”. Cluster Computing (ISSN: 1573-7543), Vol.: 19,
pp. 1-11, 2016. Springer International Publishing.

José M. Cecilia and José M. García. “Re-engineering the ant colony optimization
for CMP architectures”. The Journal of Supercomputing (ISSN: 0920-8542), pp
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OUTLINE

1 BACKGROUND

2 CASE STUDY: 3-D STENCIL CODES

3 CASE STUDY: SEMANTIC WEB AND BIOINFORMATICS

4 CASE STUDY: ACO

5 CONCLUSIONS AND FUTURE RESEARCH LINES
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CONCLUSIONS & FUTURE WORK
LESSONS LEARNED

CODE MODERNIZATION

Compilers often cannot do the job
Automatic parallelization/vectorization still unsolved
Often intricate changes in the algorithm required
Fast code can be large and could violate “good” software engineering prac-
tices

Portability: Intel high-end architectures offer code portability with performance
gains

Code modernization best practices (single node)
Vector instructions
Thread parallelization
Memory hierarchy
Manual tuning required

Good speedups obtained (sometimes very good), but parallel efficiency is more
difficult

Code modernization requires expert knowledge in algorithms, coding, and archi-
tecture
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CONCLUSIONS & FUTURE WORK
LESSONS LEARNED

FROM OUR CASE STUDIES

3-D stencil codes
Vectorization is the key strategy
Expose more parallel opportunities using the modifier collapse (2) and
schedule (dynamic)
The application of blocking techniques improves memory locality for these
kernels

HPC-SWIT tool
Great benefit from an interpreted to a compiled language
A task-based parallelization strategy
I/O bottleneck solved by data compression

ACO applied to TSP
Changes in the code needed for vectorization
The compute-bound problem changed to a memory-bound for large in-
stance sizes
Parallel efficiency was affected by core load unbalance, memory bandwidth
and NUMA effects
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CONCLUSIONS & FUTURE WORK
DENNARD SCALING + AMDAHL’S LAW

FIGURE: Speedup versus % ”Serial” Processing Time; from Hennessy’s talk [2018]
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CONCLUSIONS & FUTURE WORK
DSLS & DSAS

CHALLENGES AHEAD

Application focus shifts: From desktop to individual, mobile devices and ultrascale
cloud computing, IoT, Bid Data, Deep Learning: new constraints

Demand for higher performance focused on such specific domains

HW-approach: Only path left is Domain Specific Architectures. Just do a few
tasks, but extremely well

Domain Specific Architectures (DSAs): Achieve higher efficiency by tailoring the
architecture to characteristics of the domain

The biggest concern for Exascale application developers is the need to write and
maintain multiple versions of their software and the uncertainty over what the
architectures will be

SOLUTIONS

Domain Specific Languages (DSL) have to be architecture-independent (so, in-
teresting compiler challenges will exist)

Combination: DSLs architecture agnostic & DSAs

Real modern code: One Code (Optimized, portable and future-proof) for All Platforms
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CREDITS
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Any questions?

SPEEDING UP SCIENTIFIC CODES IN HPC
ARCHITECTURES BY CODE MODERNIZATION:

LESSONS LEARNED (2/2)
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jmgarcia@um.es

Parallel Computing Architecture Group (GACOP)
University of Murcia

Murcia (Spain)

Academic Training Lecture Programme @ CERN
Geneve (Switzerland), June 2019
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