Rapidity distributions of π mesons produced in $p+p$ and Pb+Pb collisions at CERN SPS energies

Andrzej Rybicki
H. Niewodniczański Institute of Nuclear Physics
Polish Academy of Sciences

Work done together with
A. Szczurek, M. Kiełbowicz, Ł. Rozpłochowski,
A. Marcinek, V. Ozvenchuk, N. Davis

1. Introduction;
2. The model;
3. The pion rapidity distribution in $p+p$ collisions;
4. The energy balance in $p+p$ and Pb+Pb collisions;
5. Proton-nucleus reactions;
1) **Introduction**
• This analysis was inspired by our studies of **electromagnetic effects** in heavy ion collisions.

• Charged spectators generate **electromagnetic fields**.

• These modify the trajectories of charged π mesons (π⁺, π⁻).

• We use this effect as a new source of information on the space-time evolution of the system.

→ talk by A. Marcinek
Friday, S3 ;

see also: PRC 87 (2013) 054909,
APB 49 (2018) 711
Faster pions are produced closer to the spectator system (!)
Andrzej Rybicki, 45 Zjazd Fizyków Polskich, Kraków, 13-18 września 2019

\begin{align*}
\sqrt{s_{NN}} &= 17.3 \text{ GeV} \\
Pb+Pb &\text{ peripheral} \\
\text{NA49 preliminary}
\end{align*}

Faster pions are produced closer to the spectator system (!)

\[x_F = \frac{p_L}{p_L^{\text{beam}}} \text{ (c.m.s.)} \]

\begin{align*}
\text{Note:} \\
1 \text{ fm} &= 10^{-15} \text{ m} \quad :-)
\end{align*}
Faster pions are produced closer to the spectator system (!)

Note: 1 fm = 10^{-15} m :-)

π^+ / π^- vs. p_T for Pb+Pb peripheral collisions at $\sqrt{s_{NN}} = 17.3$ GeV.

$\sqrt{s_{NN}} = 17.3$ GeV Pb+Pb peripheral

$x_F = \frac{p_L}{p_L^{beam}}$ (c.m.s.)

d_E vs. y/y_{beam} for Au+Au, Pb+Pb, Ar+Sc collisions at 7.7-17.3 GeV.

$y = \frac{1}{2} \ln \left(\frac{E+p_L}{E-p_L} \right)$

1 fm = 10^{-15} m

1 fm = 10^{-15} m :-)

Note: 1 fm = 10^{-15} m :-)

$v_z = 0$

spectator velocity

Monte Carlo

See also: A. R., A. Szczurek et al., AIP Suppl. 9 (2016) 303
2) The model
Bricks collide

$1 \times 1 \text{ fm}^2$

... and form fire streaks

with rapidity from $E-p$ conservation

Each fire streak fragments independently into pions

$$\frac{dn}{dy} = A \cdot (E_s^* - m_s) \cdot \exp \left(- \frac{\left[(y - y_s)^2 + \epsilon^2 \right]^{\frac{n}{2}}}{n \sigma_y^n} \right)$$

available energy

fire streak rapidity

- Idea by A. Szczurek; see also: R. Hagedorn, CERN-71-12 (1971) W.D. Myers, NPA 296 (1978) 177
Bricks collide...

$1 \times 1 \text{fm}^2$

...and form fire streaks

with rapidity from $E-p$ conservation

Each fire streak fragments independently into pions

$d n / d y = A \cdot (E_s^* - m_s) \cdot \exp \left(- \frac{[(y - y_s)^2 + \epsilon^2]^{n/2}}{n \sigma_y} \right)$

Available energy

Fire streak rapidity

Total fire streak energy

Sum of brick masses

• Idea by A. Szczurek; see also: R. Hagedorn, CERN-71-12 (1971) W.D. Myers, NPA 296 (1978) 177
Bricks collide ...

$1 \times 1 \text{ fm}^2$

... and form fire streaks

with rapidity from $E-p$ conservation

Each fire streak fragments independently into pions

$$\frac{dn}{dy} = A \cdot (E_s^* - m_s) \cdot \exp\left(-\frac{\left[(y - y_s)^2 + \epsilon^2\right]^{1/2}}{n \sigma_y}\right)$$

available energy

fire streak rapidity

total fire streak energy

sum of brick masses

data points from: NA49, PRC 86 (2012) 054903
3) The pion rapidity distribution in p+p collisions

- From now on: $\sqrt{s_{NN}} = 17.3$ GeV.

Each fire streak fragments independently

Available energy

Fire streak rapidity

Total fire streak energy

Sum of brick masses

$$f(y) = A \cdot (E_s^* - m_s) \cdot \exp\left(-\frac{\left[(y - y_s)^2 + \epsilon^2 \right]^{\frac{n}{2}}}{n \sigma_y^n} \right)$$

Data points from: NA49, PRC 86 (2012) 054903
Each fire streak fragments independently into pions. For

\[\pi^-, \text{ Pb+Pb, } \sqrt{s_{NN}} = 17.3 \text{ GeV} \]

3) The pion rapidity distribution in p+p collisions

- From now on: $\sqrt{s_{NN}} = 17.3$ GeV.

Each fire streak fragments independently

$$f(y) = A \cdot (E_s^* - m_s) \cdot \exp \left(- \frac{[(y - y_s)^2 + \epsilon^2]^{n/2}}{n \sigma_y^n} \right)$$

- Available energy
- Fire streak rapidity
- Total fire streak energy
- Sum of brick masses

Summary (1):

- The pion rapidity distribution from one fire streak in Pb+Pb collisions resembles the pion rapidity distribution in p+p reactions;
- There is a difference in absolute normalization: 0.748;
- This difference can be understood by a different energy repartition in p+p and Pb+Pb reactions.

\[
 f(y) = A \cdot \left(E_s^* - m_s \right) \cdot \exp \left(- \frac{\left[(y - y_s)^2 + \epsilon^2 \right]^{\frac{n}{2}}}{n \sigma_y^n} \right)
\]

Available energy

Fire streak rapidity

Total fire streak energy

Sum of brick masses

\[E_s^* = \sqrt{s_{NN}} \]
\[m_s = 2m_N \]
\[y_s = 0 \]

Data points from: NA49, EPJC 45 (2006) 343
Digression:

isospin
• Pb+Pb collision: 40% protons, 60% neutrons;

• p+p → π−X is not directly comparable to Pb+Pb → π−X!

• isospin symmetry: \(\frac{dn}{dy}(n \rightarrow \pi^-) = \frac{dn}{dy}(p \rightarrow \pi^+) \)

• isospin-averaged \(\pi^- \) distribution:

\[
\frac{dn}{dy}(N + N \rightarrow \pi^- X) = \left(\frac{Z}{A} \right) \cdot \frac{dn}{dy}(p + p \rightarrow \pi^- X) + \left(1 - \frac{Z}{A} \right) \cdot \frac{dn}{dy}(p + p \rightarrow \pi^+ X)
\]

Once isospin is taken into account, the difference in absolute scaling between p+p and Pb+Pb collisions changes from 0.748 to 0.812.
4) The energy balance in p+p and Pb+Pb collisions

For a more extended description including formulae, numerical values, tables and plots, please see PRC 99 (2019) 024908
Pb+Pb: (Fire streak energy) ≈ (baryon energy) + (pion energy) + (kaon energy)

p+p: (Fire streak energy) = \(\sqrt{s} \approx (\text{baryon energy}) + (\text{pion energy}) + (\text{kaon energy}) \)
Pb+Pb: (Fire streak energy) \(\approx \) (baryon energy) + (pion energy) + (kaon energy) >

p+p: (Fire streak energy) = \(\sqrt{s} \approx \) (baryon energy) + (pion energy) + (kaon energy)

strangeness enhancement

K. Grebieszkow, NA61/SHINE, CPOD 2018, and references therein

pion production from one fire streak

\(E^*_x = \sqrt{s_{NN}} \)
\(m_s = 2 m_N \)
\(y_s = 0 \)
Pb+Pb: (Fire streak energy) ≈ (baryon energy) + (pion energy) + (kaon energy)

p+p: (Fire streak energy) = \(\sqrt{s} \) ≈ (baryon energy) + (pion energy) + (kaon energy)

baryon stopping
(inelasticity)

strangeness enhancement

Protons (also neutrons and \bar{p})

In $p+p$ collisions, the average energies of pions, kaons, and protons can be computed directly from their spectra:

$$
\langle E_i \rangle = \frac{\int_0^1 \int_0^{p_T(\text{max})} E_i(x_F, p_T) \cdot \left(\frac{d^2\sigma}{dx_F dp_T} \right)_i \, dp_T \, dx_F}{\int_0^1 \int_0^{p_T(\text{max})} \left(\frac{d^2\sigma}{dx_F dp_T} \right)_i \, dp_T \, dx_F}
$$

In the nearly-49 GeV \sqrt{s} NA49 collider, p_L = 0.1 GeV/c, $p_T = 0.2$ GeV/c, leading to $x_F = 0.15$. The p_L beam is centered at $x_F = 0$, $N+N = \pi X$, $m_s = 2 m_N$, $y_s = 0$.

$E^*_s = \sqrt{S_{NN}} \cdot 0.812 \cdot f(y)$

Calculation of energy balance (simplified):

\[
\langle E_i \rangle = \frac{\int_0^1 \int_0^{p_T^{\text{max}}} E_i(x_F, p_T) \cdot \left(\frac{d^2\sigma}{dx_F dp_T}\right)_i \, dp_T \, dx_F}{\int_0^1 \int_0^{p_T^{\text{max}}} \left(\frac{d^2\sigma}{dx_F dp_T}\right)_i \, dp_T \, dx_F}
\]

\[E_* = \sqrt{s_{NN}}\]

\[m_s = 2m_N\]

\[y_s = 0\]

\[K = \frac{2 \cdot E_{inel}}{\sqrt{s} - 2m_p}\]

\[K = 0.547\]

The relation between (baryon energy), (pion energy) and (kaon energy) in \(\text{Pb+Pb}\) collisions is calculated on the basis of:

→ baryon inelasticity in \(\text{Pb+Pb}\), \(K \approx 0.78\);

→ the change in \(<K>/<\pi>\) ratios between \(\text{p+p}\) and \(\text{Pb+Pb}\) (~2).

In this way we get (per unit of total collision energy):

\[
\frac{\text{Energy spent on pions in } \text{p+p}}{\text{Energy spent on pions in } \text{Pb+Pb}} = 0.781
\]
The pion rapidity distribution from one fire streak in Pb+Pb collisions reproduces the pion rapidity spectrum in p+p collisions …

… with a difference in absolute normalization which comes from the different energy repartition in the two reactions.

Thus, a correspondence exists between dn/dy spectra in p+p and Pb+Pb collisions.

The pion rapidity distribution from one fire streak in Pb+Pb collisions reproduces the pion rapidity spectrum in p+p collisions …

… with a difference in absolute normalization which comes from the different energy repartition in the two reactions.

Thus, a correspondence exists between dn/dy spectra in p+p and Pb+Pb collisions.
π⁻, Pb+Pb, \(\sqrt{s_{NN}} = 8.8\) GeV

![Graph for Pb+Pb at 8.8 GeV](image1)

- \(b = 2.47\) fm
- \(b = 4.35\) fm

π⁻, N+N, \(\sqrt{s_{NN}} = 8.8\) GeV

![Graph for N+N at 8.8 GeV](image2)

- Pion production from one fire streak
- \(E^* = \sqrt{s_{NN}}\)
- \(m_s = 2m_N\)
- \(y_s = 0\)
- 2-4%

Valid for

\[8.8\ \text{GeV} \leq \sqrt{s_{NN}} \leq 17.3\ \text{GeV}\]

(or better)

π⁻, Pb+Pb, \(\sqrt{s_{NN}} = 17.3\) GeV

![Graph for Pb+Pb at 17.3 GeV](image3)

- \(b = 8.41\) fm
- \(b = 6.64\) fm

π⁻, N+N, \(\sqrt{s_{NN}} = 17.3\) GeV

![Graph for N+N at 17.3 GeV](image4)

- Pion production from one fire streak
- \(E^*_s = \sqrt{s_{NN}}\)
- \(m_s = 2m_N\)
- \(y_s = 0\)
- 4%

\(\pi^- \), Pb+Pb, \(\sqrt{s_{NN}} = 8.8 \) GeV

- **B = 2.47 fm**

\(\pi^- \), N+N, \(\sqrt{s_{NN}} = 8.8 \) GeV

- pion production from one fire streak
- \(E^* = \sqrt{s_{NN}} \)
- \(m_s = 2m_N \)
- \(y_s = 0 \)

\(C_0 \)

- **\(\pi^- \), Pb+Pb, \(\sqrt{s_{NN}} = 17.3 \) GeV**

- **B = 6.64 fm**

\(\pi^- \), N+N, \(\sqrt{s_{NN}} = 17.3 \) GeV

- **Reinvented by A. Szczurek**
- **Local energy-momentum conservation**
- **R. Hagedorn, CERN-71-12 (1971)**
- **W.D. Myers, Nucl. Phys. A 296 (1978) 177**

Andrzej Rybicki, 45 Zjazd Fizyków Polskich, Kraków, 13-18 września 2019
π^-, Pb+Pb, $\sqrt{s_{NN}} = 8.8$ GeV

π^-, Pb+Pb, $\sqrt{s_{NN}} = 17.3$ GeV

Local energy-momentum conservation

R. Hagedorn, CERN-71-12 (1971)

(Re)invented by A. Szczurek.

Experimental data: NA61/SHINE, EPJC 74 (2014) 2794, EPJC 77 (2017) 671
5) Proton-nucleus reactions
$\pi^+ + \pi^-$, $\sqrt{s_{NN}} = 17.3$ GeV

Energy balance:
change in energy spent on pions by +13% w.r.t. p+p, most probably can be explained by baryon stopping [in progress].

\[\pi^+ + \pi^-, \sqrt{s_{NN}} = 17.3 \text{ GeV} \]

Energy balance: change in energy spent on pions by **+13 %** w.r.t. p+p, most probably can be explained by baryon stopping [in progress].
6) Summary:

- Our study started from EM effects on final state particles...
- ... and resulted in a model of the longitudinal evolution of the system, which
 - explains the centrality dependence of pion yields and rapidity distributions in Pb+Pb collisions;
 - links p+p and Pb+Pb reactions;
 - is valid in some extended range of collision energy ($\sqrt{s_{NN}} = 9 - 17$ GeV, for now).
Our study started from EM effects on final state particles...

... and resulted in a model of the longitudinal evolution of the system, which

→ explains the centrality dependence of pion yields and rapidity distributions in Pb+Pb collisions;
→ links p+p and Pb+Pb reactions;
→ is valid in some extended range of collision energy ($\sqrt{s_{NN}} = 9 - 17$ GeV, for now).

Note: the experimental data used in this talk come from the NA49 and NA61/SHINE experiments at the CERN SPS, with participation of 2 and 9 Polish groups, respectively.

Thank you.
Acknowledgments.

This work was supported by the National Science Centre, Poland (grant no. 2014/14/E/ST2/00018).
Extra slides
More on
Proton-nucleus collisions

\[\pi^+ + \pi^-, \sqrt{s}_{NN} = 17.3 \text{ GeV} \]

Energy balance: change in energy spent on pions by +13 % w.r.t. p+p, most probably can be explained by baryon stopping [in progress].
More on energy dependence
Bricks collide . . .

1 x 1 fm\(^2\)

. . . and form fire streaks

with rapidity from \(E-p\) conservation

Each fire streak fragments independently into pions

\[
\frac{dn}{dy} = A \cdot (E_s^* - m_s) \cdot \exp \left(- \frac{\left((y - y_s)^2 + \epsilon^2\right)^{\frac{n}{2}}}{n\sigma_y^n} \right)
\]

available energy

fire streak rapidity

total fire streak energy

sum of brick masses

 Peripheral (\(b=9.72\) fm)

\(\sqrt{s_{NN}} = 17.3\) GeV

Pb+Pb

Peripheral (\(b=9.72\) fm)

Central (\(b=2.55\) fm)

\[
\sqrt{s_{NN}} = 17.3\text{ GeV}
\]

Pb+Pb

\(\pi^-\)

Peripheral

Central

data points from: NA49, PRC 86 (2012) 054903
Bricks collide...

$1 \times 1 \text{ fm}^2$

...and form fire streaks

with rapidity from $E-p$ conservation

Each fire streak fragments independently into pions

π^-, Pb+Pb, $\sqrt{s_{NN}} = 17.3 \text{ GeV}$

$d n / dy = A \cdot \left(E_s^* - m_s \right) \cdot \exp \left(- \frac{\left[(y - y_s)^2 + \epsilon^2 \right]^{n/2}}{n \sigma_y^n} \right)$

available energy

fire streak rapidity

total fire streak energy

sum of brick masses

data points from: NA49, PRC 86 (2012) 054903
Bricks collide . . .

$1 \times 1 \text{ fm}^2$

. . . and form fire streaks

with rapidity from E-p conservation

Each fire streak fragments independently into pions

π^-, Pb+Pb, $\sqrt{s}_{NN} = 8.8$ GeV

$dn/dy = A \cdot (E_s^* - m_s) \cdot \exp \left(\frac{-[(y - y_s)^2 + \epsilon^2]^{\frac{n}{2}}}{n\sigma_y^n} \right)$

total fire streak energy

\sum of brick masses

available energy

fire streak rapidity

Peripheral

Central

data points from: NA49, PRC 86 (2012) 054903
Our simple model explains the full centrality dependence of the pion dn/dy spectrum. It is valid in some extended range of collision energy ($\sqrt{s_{NN}} = 9 - 17$ GeV at the least).

Each fire streak fragments independently into pions with rapidity from E-p conservation:

\[
\frac{dn}{dy} = A \cdot (E_s^* - m_s) \cdot \exp \left(-\frac{\left[(y - y_s)^2 + \epsilon^2 \right]^{\frac{\eta}{2}}}{n \sigma_y^n} \right)
\]

available energy

<table>
<thead>
<tr>
<th>Model</th>
<th>b (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>4.35</td>
</tr>
<tr>
<td>C1</td>
<td>6.32</td>
</tr>
<tr>
<td>C2</td>
<td>8.03</td>
</tr>
<tr>
<td>C3</td>
<td>8.41</td>
</tr>
<tr>
<td>C4</td>
<td>9.46</td>
</tr>
</tbody>
</table>

total fire streak energy

sum of brick masses

data points from: NA49, PRC 86 (2012) 054903
The energy balance in p+p reactions at SPS energies
(PRCE 99 (2019) 024908, Appendix A)

\[\sqrt{s} \approx \text{(baryon energy)} + \text{(pion energy)} + \text{(kaon energy)} \]

Taking the values for K, (pion energy) and (kaon energy) from the Tables, we get

\[\sqrt{s} \approx 16.629 \text{ GeV} \rightarrow \text{agreement within 3.7%} \]

Including pair production of protons, antiprotons, neutrons and antineutrons:

\[\langle E_p \rangle = 1451 \text{ MeV} \]

\[E(pp \rightarrow \bar{p}) = 0.0386 \cdot 1451 = 56 \text{ MeV} \]

Following the considerations made in [17], we multiply the above by 1.66 in order to obtain the average energy spent on antineutron production. Finally we multiply the

\[E(pp \rightarrow \text{non-strange, pair-produced } B \text{ and } \bar{B}) = 2 \cdot (1 + 1.66) \cdot 56 = 298 \text{ MeV} \]

We obtain:

\[\sqrt{s} \approx 16.927 \text{ GeV} \rightarrow \text{agreement within 2%} \]
The energy dependence of the fire streak fragmentation function
(PRC 99 (2019) 024908, Appendix B)

FIG. 7:

Comparison of single fire-streak fragmentation functions used for the description of π^- rapidity distributions in Pb+Pb collisions at $\sqrt{s_{NN}} = 8.8$ GeV (solid) and at $\sqrt{s_{NN}} = 17.3$ GeV (dotted). The two presented functions are given by Eq. (2.1) with $(E_s^* - m_s) \equiv 1$ GeV. The numerical values of the function parameters are given in the text.
Each fire streak fragments independently into pions:

Finally, we get (per unit of total collision energy):

\[
\frac{\text{Energy spent on pions in } p+p}{\text{Energy spent on pions in } Pb+Pb} = 0.781 \quad 4 \%
\]
References cited in the Tables

Bricks collide …

1 x 1 fm²

… and form fire streaks

Peripheral (b=9.72 fm)

Central (b=2.55 fm)

R. Hagedorn, CERN-71-12
W.D. Myers, Nucl. Phys. A
(Re)invented by A. Szczurek

Characteristics of fire streaks

$\sqrt{s_{NN}} = 17.3$ GeV

Pb+Pb

$\sqrt{s_{NN}} = 17.3$ GeV

Pb+Pb

$\sqrt{s_{NN}} = 17.3$ GeV

Pb+Pb

$\sqrt{s_{NN}} = 17.3$ GeV

Pb+Pb
More on EM effects

Note: the remaining points on the bottom plot are deduced from EM effects on azimuthal anisotropies:

A. R.,
B42 (2011) 867

\[y = y_{\text{beam}} = \frac{1}{2} \ln \left(\frac{E + p_L}{E - p_L} \right) \]
The simplest model (first attempt for Pb+Pb) reproduces overall systematic effect, but hardly fits to individual points.

Addition of spectator expansion (motivated by Ar+Sc) already visibly improves the situation for Pb+Pb.

Building EM simulation on top of the fire streaks model (motivated by observations from EM effects) makes it follow most of the points.

There is still room for improvement for $x_F \approx 0$.