RDataFrame Enhancements for
Distributed Processing

SWAN-TOTEM Helix Nebula Project
51st Parallelism, Performance and Programming model meeting

Javier Cervantes, Enric Tejedor

Helix Nebula Project

e European Partnership between IT providers and three research centres (CERN, EMBL and ESA)
o 40 public and private partners
e Science cloud platform for the European research community (Horizon 2020)
o Cloud services serving scientific users from a wide range of domains.
e Collaboration at CERN:
o Interactive Data Analysis for End Users on Helix Nebula Science Cloud (HNSciCloud)
o Contributors:
m TOTEM Experiment
m EP-SFT (ROOT)
m [T-Databases
m [T-Storage

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Helix Nebula Project

e First test: HN Deployment (2017)
o Provide existing CERN Products as a service

Open Source Q @

disk-based storage I[

@ Synchronization @g CERNBoXx

and Sharing
‘_< o

o

jupyter
e’
®

Interactive Notebooks
in a Web Browser

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

&

docker

[Science Box }

Helix Nebula Project

Google
e Current test: HN TOTEM Test (2018) Summerer Code
o Interactive analysis using Spark for / Helix Nebula Science Cloud \
distributed processing “\Z B
o TOTEM proton-proton .| B SWAN Spr’(

. : Master m
I’i\]’ g @ Node Workers

elastic scattering analysis ~ <&=—b @ : o ﬂ\

| cuwrs @ | cosFuse E B @\?
Client | Mount e B M
gl oze
- . 1y
2 e - - -~ 1 Management node |

= ’
\ P \J

____________ = File Storage Servers

T
_ /

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Motivation - The Problem | ROOT6.14

e When running the TOTEM analysis with distributed RDataFrame, the number of bytes read and
CPU usage increased with the number of partitions of the input dataset

Parallelism vs CPU Usage & Bytes Read with DS1 (90GB) of
input dataset

4000

2000 6

Bytes Read (GB)

1000

CPU Usage (seconds)

2 4 8 16 32

Number of active cores/partitions (p) [log scale]

== CPU Usage (seconds) == Bytes Read (GB)

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Credit: Prasanth Kothuri

ROOQOT File Format concepts learned

Reading from a ROOT File

myfile.root

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

myTree

myfile.root

e ROQOT File may contain one or more TTrees

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

N entries (rows) of this
branch (column)

>

myTree

L L L L

myfile.root

e ROOT File may contain one or more TTrees
e TTrees contain branches where final values are stored in leaves
o Columnar representation in memory

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Branch A
Branch B
Branch C
Branch D

Reading from a ROOT File

myTree
Cluster 1 Cluster 2 Cluster 3 Cluster 4
myfile.root
i Branch A
e ROOT File may contain one or more TTrees Branch B
e TTrees contain branches where final values are stored in leaves Branch C
o Columnar representation in memory Branch D

e Branches are grouped in clusters

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

e ROOT is optimized for sequential reading

of an entire file (all branches / all clusters)

o Minimize access to disk
o Cache data for future accesses (TTreecache)

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

1

myfile.root

11

Reading from a ROOT File

® ROQT is optimized for sequential reading of an
entire file (all branches / all clusters)
o Minimize access to disk
0 Cache data for future accesses (TTreeCache)
e By default TTreeCache reads in consecutive
clusters until:

o the end of the file
o orthe cache is full

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

1 2 3

myfile.root

Clusters 1 and 2

TTreeCache

12

Reading from a ROOT File

® ROQT is optimized for sequential reading of an
entire file (all branches / all clusters)
o Minimize access to disk
0 Cache data for future accesses (TTreeCache)
e By default TTreeCache reads in consecutive
clusters until:

o the end of the file
o orthe cache is full

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

1 2 3 4

myfile.root

Clusters 3 and 4

TTreeCache

13

Reading from a ROOT File

® ROQT is optimized for sequential reading of an
entire file (all branches / all clusters)
o Minimize access to disk
0 Cache data for future accesses (TTreeCache)
e By default TTreeCache reads in consecutive
clusters until:

o the end of the file
o orthe cache is full

e Users can force the TTreeCache to read in only
those branches being processed

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

I

|
myfiile. root/ //

TTreeCache

14

Reading from a ROOT File

L

L

1

5

myfilel.root

myfile2.root

For big datasets split in different files we work with a TChain

©)

O

TChain = tree stored in multiple files

Tree clusters never exceed the boundaries of a file

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

15

Problems identified

@ Cluster prefetching - [ROOT-9773]

o When a task was processing a range of entries, clusters outside the range were prefetched in
the Spark executor processes

@ Branch prefetching - [ROOT-9802]

o Branches that were not processed in the RDataF rame computation were also read

@ Full sweep of TChain - [DistROOT changes]
o Problematic if the range was located towards the end of the chain

@ RDataF rame reset the chain current entry to O after the event loop - pr#3001
o Caused an unnecessary extra cluster prefetching

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

16

https://sft.its.cern.ch/jira/browse/ROOT-9773
https://sft.its.cern.ch/jira/browse/ROOT-9802
https://github.com/etejedor/root-spark/pull/1
https://github.com/root-project/root/pull/3001

[ROOT-9773]

(1) Cluster prefetching

When a task was processing a range of entries, clusters outside the range were
prefetched in the Spark executor processes

e Processing one file myfile.root with two Spark workers

1 2 3 4

myfile.root

Worker 1 Worker 2
| | I | | =
SEENINNNARENIEEN SN IENNRRENNENN
beskedreadmg | | Des#edreadmg |
| Remréadmg | Reméeamng
51st PPP istri g

https://sft.its.cern.ch/jira/browse/ROOT-9773

[ROOT-9773]

(1) Cluster prefetching

When a task was processing a range of entries, clusters outside the range were
prefetched in the Spark executor processes

e Processing one file myfile.root with two Spark workers

iy ree

1

myfile.root

Worker 1 Worker 2
nyTree nyTree
1 2 3 4 1 2 3 4
beskedreadmg Des#edreadmg
| Remréadmg | Reméeamng
51st PPP Meeting - RDataFrame Enhancements for Distributed Processing 18

https://sft.its.cern.ch/jira/browse/ROOT-9773

[ROOT-9802]

(2) Branch prefetching

Branches that were not processed in the RDataFrame computation were also read

e Processing one branch from file myfile.root

myfile.root

| | | myTree

I

Desired reading

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

https://sft.its.cern.ch/jira/browse/ROOT-9802

(2) Branch prefetching

[ROOT-9802]

Branches that were not processed in the RDataFrame computation were also read

e Processing one branch from file myfile.root

myfile.root

myTree

-

B LI

—_

=

J

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Real reading

[N branches extra Reading]

* Specific instructions to force caching of a
single branch were not considered

20

https://sft.its.cern.ch/jira/browse/ROOT-9802

[DistROOT changes]

() Full sweep of TChain

e Problematic if the range was located towards the end of the chain

e TChain
Stages: O:treeReduce

Tasks:

2 myfilel.root myfilel.root myfilel.root

0805 local -

Toske: 1 C Entries 0 10 11 20 N K
Bl “Task
e 5 [teration

0003 alocal

Tasks:

!

spark-w-

0002.n ! 1

e Task processing last part of the TChain still iterates from
the beginning of the chain (although it does not read)
o Time consuming

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

https://github.com/etejedor/root-spark/pull/1

Solutions applied

@ Cluster prefetching

v Respect cluster boundaries when creating entry ranges
v Prefetch only the clusters of current range into the cache

@ Branch prefetching
v Only cache branches processed during the RDataFrame computation
Partial sweep of TChain
v Spark executors create a TChain with only the files of current range

RDataFrame reset the chain current entry to O after the event loop
v" Reset without reading

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

22

Reading Comparison OIOIO

@ ROOT-latest [} ROOT-v6.14

e No Spark, local execution

e Input: 1 File from DS1 L
e Distill + Distributions
75
2
=
o 50
(]
g
]
o
o
25
O ==y 1
Data Metadata Data Metadata Data
1 2 4

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

partitions

Metadata

Data

8

Metadata

23

Reading Comparison OIOIO

. B ROOT-latest [ROOT-v6.14
e No Spark, local execution

e Input: 1 File from DS1
e Distill + Distributions

75
25
Stable on (non meta) bytes
read wrt # partitions
Py 1

0
Data Metadata Data Metadata Data Metadata Data Metadata

1 2 4 8
51st PPP Meeting - RDataFrame Enhancements for Distributed Processing # partitions

100

Data read (MBs)
wun
o

Reading Comparison OIOIO

B ROOT-latest [ROOT-v6.14)

e No Spark, local execution N partitions in one file
e Input: 1 File from DS1 L N reads of metadata
e Distill + Distributions g
For TChains, double metadata reading only
L2 happens if one file is needed by two ranges!
J
@
=3
o 50
&
3
]
o
25
Stable on (non meta) bytes
read wrt # partitions
0 =Y
Data Metadata Data Metadata Data Metadata Data Metadata
1 2 4 8 25

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing # partitions

Performance Comparison (3)

e Spark execution, HN cloud, 4 executors
e Input: DS1 (91GB, 41 files), 16 partitions (by entries)
e Distill + Distributions

After
5 min

26

Performance Comparison - Entries vs Files

e Spark execution, HN cloud, 4 executors
e Input: DS1 (91GB, 41 files), 16 partitions (by entries or files)

e Distill + Distributions
: Partitioning

File-based
5 min

Entry-based
5 min

spark-w-

51st Pl 27

ssssss
0007.novalocal

Spark RDataFrame vs RDataFrame

e All tests running on the same VM

o RDF via ssh-ing into the machine
o Spark RDF via SWAN + Spark

e Little overhead
o Generation of ranges
(accesses TChain metadata)
o Spark itself

e Multithreaded execution slower
in plain RDF (To be investigated)

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Spark vs Local execution
[l Range generation [l Wall Time
600 0 4

Execution time (s)

RDF 1 Thread Spark RDF 1 Thread RDF 4 Threads Spark RDF 4 Threads

Configuration

28

Spark RDataFrame vs RDataFrame

SpeedUp with number of partitions

400

@® RDF

@ Spark RDF

Sequential

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

2 Threads

Configuration

4 Threads

29

