
RDataFrame Enhancements for
Distributed Processing

SWAN-TOTEM Helix Nebula Project
51st Parallelism, Performance and Programming model meeting

Javier Cervantes, Enric Tejedor

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Helix Nebula Project
● European Partnership between IT providers and three research centres (CERN, EMBL and ESA)

○ 40 public and private partners
● Science cloud platform for the European research community (Horizon 2020)

○ Cloud services serving scientific users from a wide range of domains.
● Collaboration at CERN:

○ Interactive Data Analysis for End Users on Helix Nebula Science Cloud (HNSciCloud)
○ Contributors:

■ TOTEM Experiment
■ EP-SFT (ROOT)
■ IT-Databases
■ IT-Storage

2

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Helix Nebula Project
● First test: HN Deployment (2017)

○ Provide existing CERN Products as a service

3

Science Box

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Helix Nebula Project

4

● Current test: HN TOTEM Test (2018)
○ Interactive analysis using Spark for

distributed processing
○ TOTEM proton-proton

elastic scattering analysis

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Motivation - The Problem

Credit: Prasanth Kothuri

● When running the TOTEM analysis with distributed RDataFrame, the number of bytes read and
CPU usage increased with the number of partitions of the input dataset

5

ROOT v6.14

ROOT File Format concepts learned

6

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

myfile.root

7

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

myfile.root

● ROOT File may contain one or more TTrees

myTree

8

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

myfile.root

● ROOT File may contain one or more TTrees
● TTrees contain branches where final values are stored in leaves

○ Columnar representation in memory

myTree

Branch A

Branch B

Branch C

Branch D

9

N entries (rows) of this
branch (column)

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

myfile.root

● ROOT File may contain one or more TTrees
● TTrees contain branches where final values are stored in leaves

○ Columnar representation in memory
● Branches are grouped in clusters

myTree

Branch A

Branch B

Branch C

Branch D

Cluster 1 Cluster 2 Cluster 3 Cluster 4

10

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

● ROOT is optimized for sequential reading

of an entire file (all branches / all clusters)

○ Minimize access to disk
○ Cache data for future accesses (TTreeCache)

11

myfile.root

myTree

1 2 3 4

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

12

myfile.root

myTree

1 2 3 4

TTreeCache

● ROOT is optimized for sequential reading of an
entire file (all branches / all clusters)

○ Minimize access to disk

○ Cache data for future accesses (TTreeCache)

● By default TTreeCache reads in consecutive
clusters until:

○ the end of the file
○ or the cache is full

Clusters 1 and 2

 1 2

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

13

myfile.root

myTree

1 2 3 4

TTreeCache

● ROOT is optimized for sequential reading of an
entire file (all branches / all clusters)

○ Minimize access to disk

○ Cache data for future accesses (TTreeCache)

● By default TTreeCache reads in consecutive
clusters until:

○ the end of the file
○ or the cache is full

Clusters 3 and 4

 3 4

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

14

myfile.root

myTree

1 2 3 4

TTreeCache

● ROOT is optimized for sequential reading of an
entire file (all branches / all clusters)

○ Minimize access to disk

○ Cache data for future accesses (TTreeCache)

● By default TTreeCache reads in consecutive
clusters until:

○ the end of the file
○ or the cache is full

● Users can force the TTreeCache to read in only
those branches being processed

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Reading from a ROOT File

TChain

15

myfile1.root

myTree

1 2 3 4

myfile2.root

myTree

5 6 7 8

● For big datasets split in different files we work with a TChain

○ TChain = tree stored in multiple files

○ Tree clusters never exceed the boundaries of a file

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Problems identified

1. Cluster prefetching - [ROOT-9773]
○ When a task was processing a range of entries, clusters outside the range were prefetched in

the Spark executor processes

2. Branch prefetching - [ROOT-9802]
○ Branches that were not processed in the RDataFrame computation were also read

3. Full sweep of TChain - [DistROOT changes]
○ Problematic if the range was located towards the end of the chain

4. RDataFrame reset the chain current entry to 0 after the event loop - PR#3001
○ Caused an unnecessary extra cluster prefetching

1

2

3

4

16

https://sft.its.cern.ch/jira/browse/ROOT-9773
https://sft.its.cern.ch/jira/browse/ROOT-9802
https://github.com/etejedor/root-spark/pull/1
https://github.com/root-project/root/pull/3001

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

When a task was processing a range of entries, clusters outside the range were
prefetched in the Spark executor processes

● Processing one file myfile.root with two Spark workers

Desired reading

 Cluster prefetching

17

1

myfile.root

myTree

1 2 3 4

Worker 1 Worker 2

myTree

1 2 3 4

myTree

1 2 3 4

Desired reading

 Real reading Real reading

[ROOT-9773]

https://sft.its.cern.ch/jira/browse/ROOT-9773

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

When a task was processing a range of entries, clusters outside the range were
prefetched in the Spark executor processes

● Processing one file myfile.root with two Spark workers

Desired reading

 Cluster prefetching

18

1

myfile.root

myTree

1 2 3 4

Worker 1 Worker 2

myTree

1 2 3 4

myTree

1 2 3 4

Desired reading

 Real reading Real reading

1.5x Reading

[ROOT-9773]

https://sft.its.cern.ch/jira/browse/ROOT-9773

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Branches that were not processed in the RDataFrame computation were also read

● Processing one branch from file myfile.root

 Branch prefetching

19

2

myfile.root

myTree

1 2 3 4

Desired reading

[ROOT-9802]

https://sft.its.cern.ch/jira/browse/ROOT-9802

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Branches that were not processed in the RDataFrame computation were also read

● Processing one branch from file myfile.root

 Branch prefetching

20

2

myfile.root

myTree

1 2 3 4

Real reading
N branches extra Reading

* Specific instructions to force caching of a
single branch were not considered

[ROOT-9802]

https://sft.its.cern.ch/jira/browse/ROOT-9802

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

● Problematic if the range was located towards the end of the chain

 Full sweep of TChain3

myfile1.root myfile1.root myfile1.root

TChain

Entries 0 10 11 20 N K
...

● Task processing last part of the TChain still iterates from
the beginning of the chain (although it does not read)

○ Time consuming

Task
Iteration

[DistROOT changes]

https://github.com/etejedor/root-spark/pull/1

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Solutions applied
● Cluster prefetching

✓ Respect cluster boundaries when creating entry ranges
✓ Prefetch only the clusters of current range into the cache

● Branch prefetching
✓ Only cache branches processed during the RDataFrame computation

● Partial sweep of TChain
✓ Spark executors create a TChain with only the files of current range

● RDataFrame reset the chain current entry to 0 after the event loop
✓ Reset without reading

1

2

3

4

22

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

● No Spark, local execution
● Input: 1 File from DS1
● Distill + Distributions

Reading Comparison 1 2 4

 1 2 4 8
 Data Metadata Data Metadata Data Metadata Data Metadata

23

partitions

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

● No Spark, local execution
● Input: 1 File from DS1
● Distill + Distributions

Reading Comparison 1 2 4

 1 2 4 8
 Data Metadata Data Metadata Data Metadata Data Metadata

24

partitions

Stable on (non meta) bytes
read wrt # partitions

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

● No Spark, local execution
● Input: 1 File from DS1
● Distill + Distributions

Reading Comparison 1 2 4

 1 2 4 8
 Data Metadata Data Metadata Data Metadata Data Metadata

25

partitions

Stable on (non meta) bytes
read wrt # partitions

N partitions in one file
N reads of metadata

For TChains, double metadata reading only
happens if one file is needed by two ranges!

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Performance Comparison
● Spark execution, HN cloud, 4 executors
● Input: DS1 (91GB, 41 files), 16 partitions (by entries)
● Distill + Distributions

Before
12 min

After
5 min

26

3

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Performance Comparison - Entries vs Files
● Spark execution, HN cloud, 4 executors
● Input: DS1 (91GB, 41 files), 16 partitions (by entries or files)
● Distill + Distributions

Entry-based
5 min

27

File-based
5 min

Partitioning

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Spark RDataFrame vs RDataFrame
● All tests running on the same VM

○ RDF via ssh-ing into the machine
○ Spark RDF via SWAN + Spark

● Little overhead
○ Generation of ranges

(accesses TChain metadata)
○ Spark itself

● Multithreaded execution slower
in plain RDF (To be investigated)

28

51st PPP Meeting - RDataFrame Enhancements for Distributed Processing

Spark RDataFrame vs RDataFrame

29

