PDF studies with LHeC inclusive DIS pseudo-data

D. Britzger (MPI) with contributions from M. Klein, F. Giuli, and many more

1

Introduction

PDF prospects with LHeC pseudo data

PDF 'machine'

- PDF 'fitting' framework
 PDF profiling (MC, Hessian)
- Many many different aspects ... parameterisations, QCD order, HF, pseudo-data 're-generation', χ² definition, error treatment, error propagation, presentation of results, etc...

PDF prospects

- Two ingredients 1) prospects w/ LHeC data
 - 2) 'today' (or any other comparison)
- Caveat there is nowadays no data in the regime accessible by LHeC: extrapolated uncertainties of present PDFs are often debatable

Goal and methodology

Goal

- Provide an additional independent check
- perform studies, which are otherwise difficult to do

Methodology

- Use Alpos fitting framework
 - flexible and fully object-oriented fitting framework
 - Interfaces to: QCDNUM, Apfel, Apfel++, fastNLO, Applgrid, TMinuit, TMinimizer, Apccp, EPRC, CRunDec, ...
 - (good) reproduction of HERAPDFs feasible
 - Used for
 - H1PDF2017 [nnlo]
 - LHeC EW studies

- H1PDF2017 EPJ C77 (2017), 791 NNLO α_{s} from jets
- H1 electroweak analysis EPJ C78 (2018), 777
- α_s from jets [arXiv:1712.00480]
- Two-tensor pomeron model (in prep., prel. EDS2017)
- LHeC, FCC-eh EW studies (Pos Dis2017 (2018) 105)
- diffr. dijets in NNLO (EPJ C78 (2018), 538)
- H1 jet analysis (EPJ C77 (2017) 215)

LHeC EW studies

Study involves full LHeC PDF fit!

0.7

LHeC (expected

FP & SID

Standard model

0.5

H1PDF2017 [NNLO]

 10^{-2}

0.6

^{_}

0.4

0.2

0.1

1.15

1.05

0.95

0.9

0.85^L

 10^{-3}

Ratio

0.4

Ansatz

PDF parameterisation

- HERA-like PDF parameterisation

 → start with 'simple' parameterisation and extent if needed
- PDF parameters set similar to H1PDF2017 \rightarrow reasonably high gluon also at lower-x values

- \rightarrow still: include neg.-gluon term, such that gluon uncertainty has additional flexibility at lower-x
- Use most-recent polarised incl. NC & CC DIS data uncertainties from Max http://hep.ph.liv.ac.uk/~mklein/lhecdata/ Q² > 3.5 GeV², 1005 data points (NC, CC, Low-E)
- Re-calculated pseudo-data σ : NNLO QCD, ZM-VFNS, ... (details are not so important) χ^2 after minimisation is zero.
- Log-normal based likelihood function
 - → relative uncertainties are normal distributed
 - → only relative uncertainties are input to fit no translation from rel. uncert. to abs. uncert. needed
- Hesse uncertainites (linearised to PDF bands)

In short: Linear error propagation of relative uncertainties of LHeC pseudo-data to PDFs (give a certain PDF param.)

$$\chi^2 = \sum_{ij} \log \frac{d_i}{\tilde{\sigma}_i} V_{ij}^{-1} \log \frac{d_j}{\tilde{\sigma}_j}$$

Comparison with xfitter

Counter analysis by Fra using xfitter: gluon at Q=100GeV

- Same data (NC, CC DIS)
- same PDF parameters
- everything else supposely a bit differently: χ^2 , error propagation, HF, order, (some) fit parameters

Fra with xfitter

Comparison of fit parameters

Comparison of fit parameters

	Alpos			xfitter		
NO.	NAME	VALUE	ERROR			
NO	. NAME VALUE	ERROR				
1	PDFQ0_HERA.gB	-1.41932e-01	4.28038e-02	2	Bg -0.14193	0.43954E-01
2	PDFQ0_HERA.gC	5.43168e+00	1.35211e-01	3	Cg 5.4317	0.14065
3	PDFQ0_HERA.gAP	1.10893e-01	8.55227e-02	7	Aprig 0.11089	0.93281E-01
4	PDFQ0_HERA.gBP	-4.57197e-01	5.10765e-02	8	Bprig -0.45720	0.55829E-01
5	PDFQ0_HERA.uvB	6.62333e-01	3.70365e-03	12	Buv 0.66233	0.35042E-02
6	PDFQ0_HERA.uvC	4.97721e+00	8.75557e-03	13	Cuv 4.9772	0.85748E-02
7	PDFQ0_HERA.uvE	1.61257e+01	2.03477e-01	15	Euv 16.126	0.19785
8	PDFQ0_HERA.dvB	9.51296e-01	5.73567e-03	22	Bdv 0.95130	0.51711E-02
9	PDFQ0_HERA.dvC	4.87832e+00	2.05283e-02	23	Cdv 4.8783	0.18967E-01
11	PDFQ0_HERA.DbarA	2.53145e-01	2.59597e-03	41	ADbar 0.25315	0.39369E-02
12	PDFQ0 HERA.DbarB	-1.16990e-01	1.19288e-03	42	BDbar -0.11699	0.16013E-02
13	PDFQ0_HERA.DbarC	1.52941e+01	2.62952e-01	43	CDbar 15.294	0.32839
10	PDFQ0_HERA.UbarC	7.50441e+00	8.56278e-02	33	DUbar 5.8445	0.14556
EXTE	RNAL ERROR MATRIX.	NDIM= 25	NPAR= 13	101	alphas 0.11800	constant
				102	fs 0 50000	0 75973E-02

• (pretty) good agreement between alpos and xfitter (Fra)

Restricting data in x

Restrict data in X_{Bi} (keeping Q2>3.5GeV²)

- 'medium' x: almost independent on high-x (x>0.1) and low-x (x<0.0001) ٠ though: lower-x (0.0001<x<0.001) with relevant impact low-x: prospects are challenging
- - parameterisation must allow for inflation of error band •
 - lower-x (0.0001<x<0.001) apparently provides stringent extrapolation constraints in my parameterisation choice
- High-x: similar considerations as for low-x

Correlated vs. uncorrelated uncertainties

Correlation model

• Default fit considers full correlation of all syst. uncertainties of pseudo-data

Study

- Consider all uncertainties as uncorrelated, besides
- Lumi and 'CC-syst' remain correlated

 \rightarrow uncorrelated uncertainties increase uncertainties on fit parameters by about 50%

Study on dataset used

LHeC simulated data evolved...

- Recent simulated data is from 03/2017 Expects: high lumi, low-E run
- Previous prospects (<03/17) with less optimistic scenario: L~500fb⁻¹but already with polarised beams

high-x and low-x with considerable differences:
 ... partially, these can be attributed to flexibilities for PDF parameters

Summary, Conclusions

An independent study for PDF prospects was performed Using Alpos fitting framework, as used for EW studies

- Setup similar to xfitter, though with numerous differences

Consistency with xfitter

- Consistency with xfitter is observed for a reference fit to NC&CC DIS LHeC pseudodata
- ... despite numerous differences between the two fitting frameworks

Focus on gluon density

- At medium x: gluon density is fairly independent on parameterisation, pseudo-data version, error propagation technique, parameterisations, etc...
 - \rightarrow excellence reference for the different approaches
- At very-low-x and very-high-x: LHeC prospects are fairly difficult to obtain (not a focus of todays study) \rightarrow care must (already) be taken with reference PDFs

H1 vs. PDF4LHC vs. NNPDF vs. LHeC

