PDF fitting with decorrelated LHeC data in xFitter 7th Dec. 2018

Gavin Pownall¹

Francesco Giuli ³ Claire Gwenlan ¹ Max Klein ²

¹University of Oxford

²University of Liverpool

³INFN and University of Tor Vergata

For NNPDF pseudodata fits, systematic errors are uncorrelated¹ and used as follows:

$$\delta_{\text{tot},i}^{\text{exp}} \equiv \left(\left(\delta_{\text{stat},i}^{\text{exp}} \right)^2 + \left(f_{\text{corr}} \times f_{\text{red}} \times \delta_{\text{syst},i}^{\text{exp}} \right)^2 \right)^{1/2} \tag{1}$$

 $f_{\rm red}$ is a reduction factor accounting for better knowledge in future - relevant for HL-LHC, not LHeC

 f_{corr} is a scale factor accounting for the fact that these systematics are correlated.

In previous NNPDF-style studies, $f_{red} = f_{corr} = 1$

¹Except for luminosity, which is correlated across all bins and all datasets.

Gavin Pownall - gavin.pownall@cern.ch

All of these comparisons are done using 5+1 PDFs.

Only a baseline is used $(A, B \text{ and } C \text{ parameters in all PDFs} \text{ only})^2$.

Study done to NLO in QCD. Similar studies done by Francesco at NNLO, with similar results.

In the "central" fit, NC cross-sections are correlated to NC and CC correlated to CC. Systematics are combined in to one, or a select few - the precise effect of this on the results is unknown. Luminosity correlated across all datasets.

²Usual constraints on A_{u_v} , A_{d_v} and A_g from number and momentum sum rules.

Left: d_v ratio at full x range. **Right:** d_v ratio at mid x range. Similar results for u_v .

Left: \overline{D} ratio at full x range. **Right:** \overline{D} ratio at mid x range. Similar results for *D*, *U*, \overline{U} and individual quarks.

Left: g ratio at full x range. Right: g ratio at mid x range.

More reasonable values of *f*_{corr}?

Looking at gluon, the correlated results can be reproduced with $f_{corr} \sim 0.25$ - closer to 0.1 in mid region. Similar results for valence quarks.

More reasonable values of *f*_{corr}?

Looking at \overline{U} and \overline{D} , the closest f_{corr} fit really depends where you look in *x*. 0.1 at low *x*, but at mid-high *x*, 0.25 is clearly optimistic.

Tested the effect of decorrelating and scaling systematics with xFitter:

- $f_{\rm corr} = 1$ is wildly conservative.
- In some places, a value of 0.1 is reasonable. In others, a value of 0.25 is quite optimistic.

Things we still do not know:

 Does this carry over to NLLx? What about more flexible parameterisations? NNPDF methodology? T=3?

Considering other studies (Fra's studies in flexibility, studies with different tolerance values...), discrepancy might be understood after all.